$$
\begin{aligned}
& 10 \sin 8)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8ใรู่ } \\
& \text { suct }
\end{aligned}
$$






# مبانى و مفاهيم <br> علوم كامیيوتر 

مؤلف:
ولادستون فريرا فيليو

متر جمان:
على ناصر اسلى
عضو هيأت علمى گروه كامبيوتر، مجتمع آموزش عالى زرند

على رهنما
عضو هيأت علمى گروه كامبيوتر، مجتمع آموزش عالى زرند


## ارارشد

مؤسسه آموزشّى تأليفى ارشّدان


كليهى حتّوق متفوظ استت

## سخن مؤلف با خوانندگان ايرانى

خوانند
از دوران باستان، مردم و سرز زمين شما الختراءات بزر گّى را در زر زمينهى رياضيات شاهد








 مسير يادگیرى شما سرشار از بر كت و آرامشُ باد.

## ولادستون فيليو

## Dear Iranian readers,

Since ancient times, your people and your lands have witnessed great inventions in the fields of mathematics. In fact, the subject of computer science was started by Iranian mathematicians. Muḥammad ibn Mūsā al-Khwārizmī invented the algorithm-that word itself has its origin from the great mathematician's name. Fortunately, the entire world has built on top of al-Khwarizm's foundation, and today we have a modern wonder: the personal computer.

In this book, I invite you to follow the path of the invertors of algebra and the algorithm. I hope to inspire you to use the discoveries in the science of computation to create software that helps humanity build a better world, one with more love. And I invite the most adventurous of you to keep exploring and developing the science of computation, so that our children and grandchildren can have even more advanced computers to work with.

May your learning journey be blessed and peaceful.

میدانم كه دو با دو میشود جهار؛ اگر مىتوانستم آن را ثابات
 مى توانستم دو با دو را به نِنج تبديل كمّم، لذت بيشترى مى بردم.

- لرد بايرون' '

در نامهاى به زن آبندهاش آنابلا



## فهر ست مطالب

IT پيشگفتار متر جمان
10 ..... پيشَكفتار
iv 1: مفاهيم بنيادين ..... فصل
IV | ا ا- ايلـههـا
ry Y-1-منطق
H ا- ا- شمارش
rV 
4 نتيجهيگيرى
$\varepsilon \mu$ 「: يبپچيدگى ..... فصل
40 r-ا- شمارش زمان
$4 \wedge$ 
$\Delta$.

$\qquad$
r-r-r-rounal
$\Delta r$ r-Y-Y- شمارش حافظه .
orنتيجهيكيرى


فصل 1 غ: برنامهنويسى
IV - - -
IVA ^
111 -119
نتيجهي گيرى
191 ..... نتيجهـ گيرى194شيوست


## يپشكفتار متر جمان

كاميوترها بهطور شگخفتانگيزى سريع، دقيث و
نادان هستند. آدمها بهطور شگڭفتانگیزى كند،
بىدقت و باهوش هستند. ايت دو در كنار هـم
قذرتى فراتر از تصور دارنن.

- آلبرت اينشتين

كاميبوترها در طى مدت مان نسبتاً اندكى كه از اخختراع و ورود آنها به بازارها كَذشته است، تأثنرات









 دهيم.
ابن كتاب سعى دارد به زبانى بسيار ساده و با بيان مثالها و نكات قابلدركك و آسان، به واكاوى مهمتريثن مبانى و معاهبم علوم كاميوتر ببردازد. درواقع، هلف اصلى اين كتاب ارائهى مطالبى است كه
 آنها، برای ايشان حلنشده باقىمانده است. بهاينترتيب، اين كتاب مىتواند منبعى مناسب براى دانسّجويان جديدالْورود وشتهى كاميبوتر، دانش آموزان دبيرستانى و هر فرد ديگِى كه علاقهمند به

[^0]آشنايُى با نحوهى عملكرد و مغاهيم بنيادين كاميووترها است، باشّد. بايد توجه داشت كه تجارب



 موردبر رسى قرار داده و فصل ب مغهوم استراتزّى و روشها
 كاميوتر اختتصاص داده است.




 مطالْب حاشّيهاى مرتبط با علوم كاميبوتر اختصاص دادهشده است.
لازم به تذكر است كه متن اصلى كتابب به زبانى بسيار ساده و بهدوراز تكلفت رايجِ متون علمى نگاشتّه

 راستاى حفظ حق مانككت معنوى كتاب، اين ترجمه با الخذ مجوز كتبى از نويسنده و صاحب اثنر انجام و
 ارتباط با اين كتاب با ما در ميان بِگذارند.

$$
\begin{aligned}
& \text { على ناصراسدى، على رهنما } \\
& \text { گروه كاميوتر } \\
& \text { مجتمع آموزش عانى زرند } \\
& \text { زمستان 1F.1 الهجرى خورشُبدى } \\
& \text { naserasadi@zarand.ac.ir } \\
& \text { rahnama@zarand.ac.ir }
\end{aligned}
$$

## پيشگفتار

همه در اين كشور بابيد باد بغيرند كه بك كاميبوتر
را برنامهنويسى كنند، زيرا به آنها نحووى فكر
كردن را مى آموزد.

- استيو جابز '






 قدرت محاسبات فراوان است، اما افرادى كه بتو انند از آن استفاده كتند كمباب هستند. ابن تلاشیى اند كك از طرف من براى كمكك به جهان است، با هدابت شُما به سمت استفادهى مؤئر از

 را بهبود بخشـد.


## آيا اين كتاب بر'ى من است؟




(1955-2011) Steve Jobs ' جهر هماى ماند كَار صنعت كامييوتر بود. م.
http://code.energy/coding-courses ${ }^{\text {r }}$
 خلاصهاو عالّى بر اي تئيـت دانشل كسانى است كه علوم كامييو تر خواندـداند.


شكل 1: »مشكلات كاميبوترى، (دريالِت شده از http://xkcd.com)

## ولى مـّر علوم كامييوثر ڤقطط مختص دالشُّاهيان نيست؟

 مسائل را به سيستمهاى قابلمتحاسبه تغيير دهيد. شمها از تفكر مسحاسبـاتى در مسائل روزمره استفاده خواهيد

وباتـد كه تو النا باشيــد،

Perfecting
Caching
Parallelism ${ }^{r}$

## فصل

## مفاهيم بنيادين

 كه نججوم در مورد تلسكوتهها نيست. بين رياضى و علوم كاميبوتر تيوندى الزامىى وجود دازد

- ادسخر دايكستر|'

 خوب بهندرت نيازمند معادلات يبحجيده است. اين فصل فقط يكك جعبهابزاز براى حل مسئله است. شما باد خواهيد گرفت:


بهاينترتيب، آنحّه وا كه براى ترجمهى إيدههابتأن به راهحل هاى قابل محاسبه نياز داريد، در اختيار خواهيد داشت.

- ا- - ايدهها
 مهم را روى كاغذ بياوريد. حافظهى كارى مغز ما بهسادگى با حقايثق و ايدهها سرريز مى كند. نوشتن
(1930-2002) Edsger Dijkstra .e.19VY
صفتحه | | مبانیى و مثأهيم علوم كاميبيوتر


 مدلنسازع بكك مسئلهى ساده با استفاده از رباضى خواهيم تر داختـ.

فلوچارتهاها'




شكل 1-1: فرايند وبرابش ويكّى (دربافت شده از http://wikipedia org)




Flowchart



فصل 1: مناهيم بنيادين |صفته 19
وضعيت ها و گامهاى دستورالعمل را درون مستطيل ها بنويسيد.
گامهاى تصميمپ گیرى كد ممكن است فرايند مسيرهاى متفاوتى را دنبالْ كند، درون لوزى ها
بنويسيـد.

گامهاى متوالثى را با فلش به هم وصل كنيد.
شُروع و هايان فرايند را مشُشضص كنيــ.



شكل 1 - - پ: پیا كردت مقّلو بيشينه بين سه متغغير

شبهكد





```
function maximum ( \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) )
    if \(A>B\)
        if \(A>C\)
            \(\max \leftarrow A\)
        else
            \(\max \leftarrow C\)
    else
        if \(B>C\)
            \(\max \leftarrow B\)
        else
            \(\max \leftarrow C\)
```

    print max
    
 فلو جارتها براى تر كيـب نتشُههاى ذهنى كلى استفاده مى كنيـ، اجازه بـدهيد خلاقيتتان در زمان نوشتن شبه كد جريان داشته باشد (شكل (Y-؟).

استفاده از شبه كد در دنباه واقیع

- شُح يك الكوريتم
"وسيله ایى براى >انشبويانَ سال اول




(a) Derpy John
while(!morining) $\{$
tv++;
eat++;
\} \#mylife \#seríes
ctp200.com


شكل 1-س: شبه كد دو زندمّى واقعى (دوياقت شده از http://ctp200.com)

مدل هاثى رياضى



H1










准地




$$
\begin{aligned}
A & =w \times l \\
100 & =2 w+3 l
\end{aligned}
$$

عال انتـثام .

با بهد دست آ

$$
A=\frac{100}{3} w-\frac{2}{3} w^{2}
$$


 هـاد لات هو
 ,
صفخه | | مبائتى و مفاهيم علوم كامييوتر

 نياز داريل.

## 






شكل أ أ: منطق بيرنامهنويسان (دريافت شله از http://programmers.life)




Formal Logic
فصل ا: مفاهيم بنيادين | صفتح س٪

عملكرها





هستّند:
A: استخر گرم است
B: شنامى كنم
 B B=False
 .باشد آنگاه A=True باه A $\rightarrow$ B: اكر استخر گَرم باشده، آنگاه من سُنا خواهم كرد


!A: استخر سرد است



 م معادل ب $A \rightarrow B$

Operator
Variable ${ }^{\text {r }}$

Conditional Operator ${ }^{\text {F }}$
Negation Operator ${ }^{\circ}$
Contrapositive *
صفخه YF | مبانى و مغاميم علوم كاميووتر

 مختلفى بيانشده است.
 نيست كه من فقط در آب گرم شنا مى كنم. ايْن عبارت هيج حرفى در مورد آب سرد نمىزند. بهعبارتديگر،


 كه

عطف، فصل و فصل انحصارى ": اين عملگُرها معروفترين عملگَرها هستند و اغلب بهصورت
 فصل با OR نشان مى Oهد يكى از ايلهها دوست است و عملگُر فصل انحصارى با XOR نشان مىدهل درستى ايدهها نقيض بكديگّر است. مثال زبر را در رابطه با يكك مهمانى در نظر بِگيريد:

$$
\begin{aligned}
& \text { B: شَما شير نوشيدهاهِد }
\end{aligned}
$$

A OR B: شُما حجزى نوشَيدهابِيلد



اطمينان حاصل كنيد كه نحوهى عملكرد عملگُرهانیى وا كه ثاكنون ديذهايم فهميدهايد. جلدول زير



## 



## جبر بولى

همانگونه كه جبر مقدماثتى عبارات عاددى را ساده مى كندا جبر بؤى عبارات منظقى را ساده مى سازلمد.


A AND (B AND
$C)=\left(\begin{array}{ll}A & A N D\end{array}\right.$
B) AND C
A OR (B OR
$C)=\left(\begin{array}{ll}A & O R\end{array}\right.$
B) $O R \quad C$


$$
a \times(b+c)=(a \times b)+(a \times c)
$$



$$
\begin{aligned}
& \text { A AND }\left(\begin{array}{lll}
B & O R & C
\end{array}\right)=\left(\begin{array}{lll}
A & A N D & B
\end{array}\right) \quad O R \quad\left(\begin{array}{ll}
A & A N D \\
C
\end{array}\right) \\
& A \quad O R \quad(B \quad A N D C)=\left(\begin{array}{lll}
A & O R & B
\end{array}\right) A N\left(\begin{array}{lll}
A & O R & C
\end{array}\right)
\end{aligned}
$$





$$
\left.\begin{array}{lll}
!(A & A N D & B
\end{array}\right)=!A
$$

(Boolean Algebra ' Associativity ${ }^{r}$ Distributivity ${ }^{r}$
 سانختشـدن اولبن كاميويور بود، درس میداد.

صغحه Y Y | مبانى و مغاهيم علوم كاميووتر
اين قوانين موجب تغيير شكل مدلهاى منطقى، آشكار شدن ويزّگىها و سادهسازى عبارات مىشوند.
بياييد يكك مسئله حل كنبه:




با مدلسازى مسئله در قالب متغيرهاى منطقى، شرايط از كارافتادن سِرور دا در قالب بك عبارت مى توان بيان كرد:
A: دمایى سِرور بالًا رفته است
B: تهويه مطبوع خخاموش است
C: خنك كنتنده كار نمى كند.
(A AND B) OR (A AND C) $\rightarrow$ D
D: سِرور از كار مى افتد.

با استفاده از توزيعيذئرى مى توانبم عبارت وا بهصورت زير بنويسبم:
A AND $(B$ OR $C) \rightarrow D$
 $!D \rightarrow!(A$ AND ( $B$ OR $C))$

استفاده از قانون دمور گان بر ایى حذف برِانتزها استفاده مى كنبم:
$!D \rightarrow!A$ OR ! ( $B$ OR C)

با استغادهى مجدد از قانون دمور گان:

$$
\begin{aligned}
& !D \rightarrow!A \text { OR ! }(B \text { OR } C) \\
& !D \rightarrow!A \text { OR !B AND !C }
\end{aligned}
$$




فصل 1：مفاهيم بنيادين｜صفته rv
جلدو لهای درستى'

راه ديگر تحليل مدلهاى منطقى بررسى تمام حالات ممكن يـكرهبندى متغير هاى آن است．جاولو درستى براى هر متغير يكك ستون دارد．سطرها تر كيبات ممكن وضعيت متغير ها را نشان مى دهند．

 اصلى True و در سطرهاى كهى شُده برابر با False قرار مىدهيد（شُكل ا－ه）．اندازمى جذـول درستى به ازاى هر متغير اضافهشده دو برابر مىسُوده به همين ديلِل اين جذدول را فقط براى تعداد كمى متغير

مى توان ساخت


شكل 1－0：جلدول（هاى شامل بيكر هبنلىىهاى ا تا 0 متغير منطقى

حال اجازه بدهيد بيبنيم چجگونه مىتوان از يكك جـدول درستى بر ای تحليل يكك مسثله استفاده كرد．

 نمىتوان بر روى يك صف ثرشُدهى نوششن قفل پإيگاه داده قرارداد．
صفحه YA | مبانى و مفاهيم علوم كاميووتر

صف نوشُتن يا بِر است يا حافظهى كَش بار گَارى شده است.

آبا چخنين چجيزى ممكن اسـت؟ اين سبستم تحت چجه شَرايطى كار مى كند؟

ابتدا هر نبازمندى را به بكك عبارت منطقى تبديل مى كنبم. اين بابكًاه داده با استغاده از حجهار متغير قابل مدلسازى است:

A: . بابگاه داده ثفل است
B: مىتوان دادهها را ذخيره كرد. I: $A \rightarrow B$

C: صفت نوشُتن بر است
II: ! (A AND C)
III: C OR D
D: حافظهى كَش بارگّارى شُده است
IV: $D \rightarrow!A$

حال مى توانبم بكك جدون درستى (جدول ا Y- ب) با تمأم بيكرهبندىهاى ممكن بسازيم. ستونهاى اضافى براي برزسى نيازمندىها اضافهشدهاند.

 حافظهى كَش رابارگذارى كرد.


 عبارات منطقى، مطمئن هستم مىتوانيد آن را بشّكنبد.


 الكترونيك.
http://code.energy/zebra-puzzle ' (1897-1955) Albert Einstein ${ }^{\gamma}$

جلوو 1－r：جدول درستى براى بزذسى اعتباد جهار عبادت

| State \＃ | A | B | C | D | I | II | III | IV | All four |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 区 | $\checkmark$ | 区 | 区 |
| 2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | 区 | $\checkmark$ | 区 | $\square$ | $\square$ | 区 |
| 3 | $\checkmark$ | $\square$ | 区 | $\square$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 区 | $\boldsymbol{\chi}$ |
| 4 | $\checkmark$ | $\nabla$ | 区 | 区 | $\checkmark$ | $\checkmark$ | V | $\checkmark$ | $\chi$ |
| 5 | $\checkmark$ | 区 | $\checkmark$ | $\checkmark$ | 区 | $\pm$ | $\square$ | 区 | $\pm$ |
| 6 | $\checkmark$ | $\pm$ | $\checkmark$ | 区 | 区 | 区 | $\checkmark$ | $\checkmark$ | $\chi$ |
| 7 | $\checkmark$ | $\pm$ | ® | $\checkmark$ | 区 | $\checkmark$ | $\checkmark$ | マ | 区 |
| 8 | $\checkmark$ | $\pm$ | 区 | 区 | 区 | $\checkmark$ | 区 | $\checkmark$ | 区 |
| 9 | 区 | $\square$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $v$ | $\checkmark$ | $\square$ | $\square$ |
| 10 | 区 | $\checkmark$ | $\checkmark$ | 区 | $\checkmark$ | $\cdots$ | $\square$ | $\checkmark$ | $\checkmark$ |
| 11 | 区 | $\square$ | 区 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\checkmark$ |
| 12 | 区 | $\checkmark$ | 区 | 区 | $\checkmark$ | $\square$ | 区 | $\checkmark$ | 区 |
| 13 | 区 | $\pm$ | $\checkmark$ | $\square$ | $\checkmark$ | $\checkmark$ | $\square$ | $\square$ | $\checkmark$ |
| 14 | 区 | 区 | $\checkmark$ | 区 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 15 | 区 | 区 | 区 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\square$ | $\checkmark$ |
| 16 | 区 | X | $\pm$ | 区 | $\square$ | $\checkmark$ | 区 | $\checkmark$ | 区 |

منطق در مححاسبات

 عملگُرهاى منطقى را بر روى جريان الكتريكى انجام مى دهند．از اين دروازهما در مدارهماى الكتريكى انجامدهنندهى محاسبات با سرعت بسيلا زياد استفاده مىشو د．

$$
\begin{aligned}
& \text { Binary Form }
\end{aligned}
$$

Logic Gate ${ }^{r}$
صضته .r| مبانى و مغاهبم علوم كاميبوتر
 تيتجه را بر دوى سيم خخروجى قرار مىدهـ. دروازهمهاى مختلفى ماتند دروازه AND، دروازه OR، دروازه XOR



 منطقي (





برایى استفاده از مزايايى اين محاسبيات سريع، ما مسائل مددى را به قالـب دودويي/منطلقى آنها
 مى كندن و در تتيجه موجـب ساده شدن مـدارها مىشود.






شا
شُمردن صحيح چجيزها اهميت زيادى دارد. شُما اين كار را بارها و در زمان كار كردن با مسائل


 نيست كه در امتحانات معمول رياضى مدرسه وجود دارد.

بيرون از مدرسه، ڤرمونها و رويههایى گامبهگام حفظ نمىشوند. در زمان نياز آنها را در ابيترنت




## حاصلضرب

 روشهانيى كه هر دو بيشامد مى توانند رخ دهند برابر با n $n$ است. بهعتوانمثال:

شكستن كد: بك كد PIN از دو وقم و يك حرف تشكيلشده است. آزما بش كردن هر PIN يك ثانيه طول مى كشّد، در بدترين حالثت، جقدر زمان براى شكستن كد نباز است؟

ا10. • نانومتر است.
「
صفحه Y | مبانى و مغاهيم علوم كاميسوتر
 $100 \times 26=2600$ كد مختلف وجود دارد. در بدترين حالثت، بايلد همهى كدها را امتحان كنيم تا



براى تبم وجود دارد؟

 كنيم: 23

$$
\overbrace{2 \times 2 \times \ldots \times 2}=2^{23}=8,388,608
$$




## جايتشت




$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 2 \times 1
$$

بهسادگى مىتوان فهميد كه !n برابر با تعداد واههأى قرار دادن n عنصر است. عنصر اول را به جندراه مىتوانيد از بين n عنصر انتخاب كنيدף بعد از انتخاب عنصر اون، به جندراه مىتوتوانيد عنصر دوم
 به سراغ مسائل بيحجيدهتر برويد

## Permutation

「بّصورت قراردادى1 ${ }^{\text {º }} 1$نصل (: مفاهيم بيندادن | مفهـ Tr

فروشندهى دورهگرد: شر كت حملونقل شما بابد كالاهابي را به ها 10 شهر تحويل

 محاسبه كردن طول همهى مسبرها جقدر طول مى كثده؟
 مىدهد، بنابراين نعداد مسيرها عبارت است از:

$$
15!=15 \times 14 \times \ldots \times 1 \approx 13 \times 10^{12}
$$

 حدود Vاهزاز سال طول مى كشّد.




 نتهاى بلااستفاده، بإبد توسعهى فاكتوريل بعد از شُشْمبن عامل را متوقف كنبه. بهصورت رسمى،


$$
\begin{aligned}
& \frac{13!}{(13-6)!}=\frac{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7!}{7!} \\
& =13 \times 12 \times 11 \times 10 \times 9 \times 8=1,235,520
\end{aligned}
$$

 مى كثّد. بهتر است موسيقيدان را اقانع كنبم ملودى مطلوب را به روش ديگرى يبدا كند.

## 


 ثـ



 وـودد دارد).
95
jon [

$$
231 /(91 \times 14!)=871,190
$$




برای ڤر نـالد از


$$
817,190 \times 2^{23}=7 \times 10^{12}
$$

$$
\begin{aligned}
& \text { if و A-T T T آ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { شامل إين ثعداد زو ONA }
\end{aligned}
$$






بك دسته كارت شامل با كارت از بكك نوع وا در نظر بِّيريد. به جندراه مىتوانيد 9 كارت را به
 ترتّب 4 كارت اهمبت ندارد، بابي اين تعداد را بر !6 تقسبم كنبم تا به دست بياوريم:

$$
\frac{13!}{6!(13-6)!}=1,716
$$

ضريب دوجملهاى
توجه به ترتيب، است:

$$
\begin{aligned}
& \binom{n}{m}=\frac{n!}{m!(n-m)!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { وزيرهاى شُطرنج: شُما بك صفحهى خالّى شُطرنج و } 1 \text { مهرْى وزير داريد كه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رادر صغحه جا بدهيد؟ }
\end{aligned}
$$

 بهصورت زير استّ!

$$
\binom{64}{8} \approx 4.4 \times 10^{9}
$$

Porcine Circovirus
Combination ${ }^{r}$
" ${ }^{\text {r }}$
صنحه r r | مبانى و مغاهيم علوم كاميووتر

مجموع
محاسبهى متجموع دنبالّها معمولاً در زمانْ شُمارش اتفاق مى افتن. مجموع ترتّيبى با استغاده از نماد


قالْب جمع محاسبه مىشود:

$$
\begin{aligned}
& \sum_{\text {Start } i}^{\text {Finish } i} \text { experssion of } i \\
& \text { بهعنوانمثالن، محاسبهى مـجموع ها عدد فرد اول بهصورت زير نوشته مى شود: } \\
& \sum_{i=0}^{4}(2 i+1)=1+3+5+7+9
\end{aligned}
$$

 محاسبهى مجموع n عدد طبيعى اول بهصورت زير است:

$$
\sum_{i=1}^{n} i=1+2+3+\cdots+(n-1)+n
$$

زمانى كه رياضبدان بزرگّ، گّاوس' '، ده سال داشت و از محاسبهى مجموع اعداد طبيعى بهصورت
تككبهنكك خسته شده بود، اين حيلهى جالْب را پِبدا كرد:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$





مى كند. جند زوج روز را بايل برسسى كنيد نا اوزانترين ڤيمت پرواز را به



(1777-1855) Gauss '
 عبارت است از $130+29+28+\cdots+{ }^{\text {ع }}$ ؛ كه مىتوان آن را بهصورت زير نوشت:

$$
\sum_{i=1}^{30} i=\frac{30(30+1)}{2}=465
$$

البته ابن مسئله را با تركيب نيز مىتوانيم حل كنيم. از • با روز ممكن، مى
 435

$$
\text { حساب كنيم. از اين نوع +r حالثت وجود دارد، بنابراين } 465=30 \text { ( }\binom{30}{2}+30
$$

倍 1



 مى كنند جرا همهحیز ر را الز دست مى دهند.
int getrandomNumber()
f
return 4; / انتّذاب شد. با حرتّاب تّاس

\}


## خروجىهاى شمارش

يكك تاس داراى ششُ حائت مختلف است. ازاينروو، شُانس آمدن عدد جههار برابر با 1/6است.


صنحه r^| مبانى و مغاهيم علوم كاميبوتر
بنابراين شانس آن برابر با $3 / 6=1$ است. بهصورت وسمى، احتمال رخ دادن يكك پيشّامد
بهصورت زير است:

ابن فرمول جوابب مىدهل، زيرا شانس وخ دادن هر خخروجى ممكن، با بِيه بكسان است: نأس متعادل
ساختههُدهه و در ثبرتاب تقلب نمى شُود.

تيم سازى مـجدد: شץ نامزد برای پيوستن به تيم شُما وجود دارند. برای هر نامزده
 نشُدن هيج كدام از نامزدها جقفدر است؟

قبلا ديدم كه تعداد 23 = 3,388,608 ${ }^{23}$ حالت مـختلف وجود دارد. تنها راه انتخاب هيجّ كس اين


$$
P(\text { nobody })=\frac{1}{8,388,608}
$$

برای اين كه بهتر اين عدد را دركك كنيد، بد نيسـت بدانيد كه احتمال سقوط بكك پرواز تجارى حدود
يك در بنـج ميلبون است.
"يشامدهاى مستقل
اگر بكك سكه و بكك تاس وا بيندازيد، شانس آمدن شير و عدد 9 برابر است با

$$
\frac{1}{2} \times \frac{1}{6}=\frac{1}{12} \approx 0.08
$$




رسُتيبان گَرقتن: شُما نباز داريد كه دادههايىى را برای بكك سال ذخيره كنيد. احتمال

هزينهى ديسكك اول است ولىى احتمال ازكارافتادن آن، بكك در دو هزار است.
كدام رابابد بخريد؟

اگر شما سه ديسك ارزان استفاده كنيد، فقط درصورتى كه هر سه ديسك از كار بيثتند، دادهها را از

 هز ينهى ديسك گران است.

## "پيشامدهاى ناسازگار'

با بككبار تأس انداختن نمى توان هم به عدد \& و هم بم به يك عدد فرد رسبد. ازابنزوو، احتمال آمدن
عدد \& و يك عدد فرد
 بك از آنها است.
انتخاب طرح ثبتنام: بك وببسابت سه طرح براى ثبتثنام ريسنهاد مىدهد:

 انتخاب مى كند. شُانس اين كه يك كاربر جديد برای يكك طرح بولى ئبتنام كند جقدر است؟
اين پيشاملها ناساز گار هستند: يك كاربر نمى تواند همزمان هر دو طرح معمولى و بيشّرفثه را انتخاب

$$
\text { كند. احتمال اين كه يكك كاربر يرداخت انجام دهد برابر است با } 0.3 \text { = 0.1 + 0.2. }
$$

پيشامدهای مكمل



Mutual Exclusive Events Complementary Events ${ }^{r}$
صنحه + + | مبانى و مفاهيم علوم كاميوتر

年 $\frac{2}{6}=\frac{1}{3}$



$$
\begin{aligned}
& \text { بازی دفاع از برج: قلعهى شُما توسط بنج برج نگَهبانى مى شود. هر برج بهاحتمال } \\
& \text { •ب٪ قادر به از كار انداخختن مهاججمان قبل از رسبدن به دروازه است. شُانس متوقف } \\
& \text { كردن مهاججمان جقدر است؟ }
\end{aligned}
$$

داريم 1 = $0.2+0.2+0.2+0.2+1$ با 0.2 با شانس زدن دشمن وجود دارد، درست
 دومرتبه از يبشامدهاى مكمل استفاده كنيد:


$$
\text { نتوانتد دشمن را بزنتد برابر است با 0.33 } 0.8^{5} .
$$

 برجها دشّمن را بزند. احتمال متوقف كردن دشَمن برابر است با

## منالطهى شرطبندى


 بازى با اعداد بيستر، كمتر است؟

 ساير اعداد است. هيج "قانونى متخفى) در مورد اججبار اعدادى كه بهطور تكرارى در گُذشته انتخاببنشدهاند به انتخاب شدن در آينده وجود ندارد.

ث1 فصل 1: مغاهيم بنيادين | صفته

احتمالات پيشرفته
جزيبات بسيار بيشترى در مورد احتمالات نسبت به آنحِه ما در اينجا بوشش داديم وججود دارد. هميشه


$$
\begin{aligned}
& \text { نامزد، شما بكك سكه را مى اندازيد و اگر شير آمد او را انتخابِ مى كنيد. شانس } \\
& \text { انتخاب هغت نفر يا كمتر هجفدر است؟ }
\end{aligned}
$$

 اين مسئله رابر روى B(23, 1/2) Wolfram Alpha م

## نتيجهِّيرى

در اين فصل، جيزهايىى وا ديديم كه رابطهى نزديكى با حل مسئلهدارند، ولى اين مطالب واقعاً شامل


 میى كند.

بخش 1-r باهمبت شهمارش حاللات ممكن و پيكرهبندىهاى مسائل مختلف را نشان مى دهد. يك
 است يا خير. برنامنويسان تازهكار اغلب زمان را براى تحليل تعداد زيادى سناريو تلف مى كنتد. درنهايت،
 با جهان فوق العُاده ولُى غيرقطعى ما تعامل داشته باشُند، بسيار مغيد است.
 نشان داديم. نظريات جذاب بسيار بيشترى وا مىتوانيد از مراجع زير با با جستجو در ويكى بِيا به دست

> Binomial Distribution '
http: / / wolframalpha.com ${ }^{\dagger}$
 اين موتور جستجو توانايى آن در حل مسائل رياضى الست. م.
صفحه XY | مبانى و مفاهيم علوم كاميوتر

آوريد. بهعنوانمثال، مىتوانيد از (اصل لانهكبوترى"، براى انبات اين كه حداقل دو نفر در شهر نيوبور كك داراى تعداد موهاى دقيقاً بكسانى هستند استفاده كنبد.
 از علوم كاميبوتر برزسى خواهيبم كرد، هستند.

مراجّع

- Discrete Mathematics and its Applications, $7^{\text {th }}$ Edition - Get it at https://code.energy/rosen
- Prof. Jeannette Wing's slides on computational thinking
- Get it at https://code.energy/wing


## فصل

## 

تقريباً در هر مهاسبهاى، ترتنببهانى متنوعى براى انجام فرايند وجود دارد. انتخاب ترتيبيى كه زي زمان
مور دنباز براي مححاسبه را كمبنه كند، الزامى استى. - ايبا لاولبس'

 برای مرتب كردن كارتها استفاده مى شُود وإبسته است.







 میىدهـ!


'1815-1852) Ada Lovelace '
 Method
: Algorit hm "
Time Complexity *
صغيه FF| مبانى و مغاهيبم علوم كاميبوتر
$\square$

 اجرایى


$$
\frac{\mathbb{T}(2 n)}{\mathbb{T}(n)}=4 \text { بيشتر نيايُز دارد }
$$











 قرار مى تيرد.





شكل r-ا: تخمين زدن زمان (درياڤت شده از http://xkcd.com)

- ا- - شمارش زمان

شيجيد


 جارى قرار بعيرد انتخاب مى كندّ:

$$
\begin{aligned}
& \text { function selection_sort(list) } \\
& \qquad \begin{array}{c}
\text { for current } \leftarrow 1 \mathrm{~m} \text { list. length }-1 \\
\text { smallest } \leftarrow \text { current } \\
\text { for } i \leftarrow \text { current }+1 \ldots \text { list. length } \\
\text { if list }[i]<\text { list [smallest] } \\
\text { smallest } \leftarrow i
\end{array} \\
& \text { list.swap_items (current, smallest) }
\end{aligned}
$$

صفحه \&4| مبانى و مفاهيم علوم كامييوتر

اجازه بدهيد بيبنبم براى يك لُنست حاوى n عنصر در بدترين حالثت حِه اتغاقى مى افتد. حلقهى بيرونى


 ( $n-1$

$$
\begin{aligned}
& \underbrace{}_{\underbrace{n-1}+\underbrace{n-2}+\cdots+2+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

در بدترين حالث، شرط if هميشه برقراراست. اين بدان معنى است كه حلقهى درونى يكك مقابسه و بك انتساب , الn
 بنابراين بيحثيد گى زمانى آن را بهصورت زير به دست مى آوريم:

$$
\mathbb{T}(n)=n^{2}+n-2
$$



> برابر مىشود:

$$
\frac{\mathbb{T}(16)}{\mathbb{T}(8)}=\frac{16^{2}+16-2}{8^{2}+8-2} \approx 3.86
$$


 شُدن به \& هستئن. اين بدان معنى است كه مرتبسازى دو ميليون عنصر هـهار برابر بيشتر از مرتبسازى بككميليون عنصر طول خحواهد كشيد.

## دركك كردن ميزان رشد

 شَيشبينى نحورى وشد زمان اجرا نياز نيست تمام عبارات آن كه بيشترين رشد را دارد و به آن عبارت غالب 「 كَفته مىشود، تخمين بزنيم.

$$
\begin{aligned}
& \text { Dominant Term }{ }^{r}
\end{aligned}
$$

> كارتهاى فهرست: ديروز شُما به بكك جعبه از كارتهاى فهرست برشورد كرده و آن را ريختهايد. دو ساءت طول كشيد نا با استفاده از مرتبسازى انتخابى آنها را مجلدداً مرتب كنيد. امروز، شما ده جعبه را ريختيد. به جقدر زمان نياز داريد نا كارتها را مرتب كنبد؟

ديديد كه مرتبسازى انتخابى بهصورت 2 n 2 است. بيشترين رشد راعبارت دارد، ازابن وو مى توانيم بنويسيم

$$
\frac{\mathbb{T}(10 n)}{\mathbb{T}(n)} \approx \frac{(10 n)^{2}}{n^{2}}=100
$$


 دارد كه تقريباً بهصورت T(n) $=0.5 n^{2}+0.5 n$ است. عبارت داراى بيسترين رشد بهصورت T( $\mathrm{T}(n) \approx 0.5 n^{2}$

$$
\frac{\mathbb{T}(10 n)}{\mathbb{T}(n)} \approx \frac{0.5 \times(10 n)^{2}}{0.5 \times n^{2}}=100
$$





كنبم:

 میشود. در حقيقت، شما مىتوانيد در نتيجهى حاصل شبيه به




㳯
 -تح










(





 O(n²)


$$
10 \log 10 \approx 34
$$

واقتى n برابر با يكا ميليون باشلد،





## 





 رابينـينـ) http://code.enery.bigo
صنحه .ه | مبانى و مغاهيبر علوم كاميوتر






## 

 نمىرسذ كه درجهى



شُكل rآنققدر رشُد سمى هارنلد سه قابللمشاهده ليستند









 بزذ






NP-Complete







شناسانيى كلاس مسئلهاى كه با آنطرف هستيد، اهميث دارد. اگر كلاس آن NP-كامل باشده، سعى در


## r-


 انجام خَود دارند. اين امر موجب مصرف حافظهى كامييوتر مى شود كه نامحلود نيست.



 بهعنوانمثال، مرتبسازى انتخابى (بخش Y-1) تنها نباز به حافظهى كارى براى چجند متغير با تعداد
 مرتبسازى انتخابى از نوع (1) O(1) است: هيج اهمميتى ندارد اندازمى ورودى هجقدر است، اين الگُوريتم به فضاى بكسانى از حافظهى كاميبوتر بهعنوان حافظهى كارى انى نياز دارد.







## نتيجهيكيرى

در اين فصل، باد گرفتيم كه التُحوريتمها مى تو انند انواع مختلفى در رابطه با زمان مصرفى محاسبات و










اجر ایى آنها وجود دارد؟؟

مى گَذارد؟

- آبا بك الگُّوريتم در صورت افزابش اندازمى ورودى تعدادى منطقى از عملبات را انجام
مى دهد؟
- 



زمانى آنها تمر كز خواهبم كرد.

## مراجع

- The Art of Computer Programming, Vol. 1, by Knuth
- Get it at https://code.energy/knuth
- The Computational Complexity Zoo, by hackerdashery
- Watch it at https://code.energy/pnp



## فصل

استراتثُى

ـر كت :هتر بگرديل.

- اماتونون لاسكر'







 سر ستخترين رقبايتان را با ثقسيه و حل كتار بز بنيلد.



 هـحاسبانتى نود غلبه خواهيل كرد.
 بنيان كَدار روانشثاسى شطرنج م

It -






إين فر ايثد را مى توان با يكك ححلقهى While تتها نوشتت:
function merge(sea, fresh)
result $\leftarrow$ List. new

```
while not (sea.empty and fresh.empty)
    if sea.top_item > fresh.top_item
                fish \leftarrow sea.remove_top_item
        else
            fish \leftarrow fresh.remove_top_item
        result.append(fish)
```

    return result
    


## حلقههاهى تودرتو "و مجممومهى توانى



 شُامل ثمام زير متجموعهمأى S است


فهر ست مى كنيد




$$
\begin{aligned}
& \text { Nested Loops } \\
& \text { Power Set }{ }^{r}
\end{aligned}
$$


صفتحه هA | مبانى و مفاهــم علوم كاميوتر

 مى دهد بهصورت تصوتيرى راحتتر است:


شكل r-ז: فهرست كردن كرارى تمام عطرها با استفاده از جهار سّل



```
function power_set(flowers)
    fragrances }\leftarrow\mathrm{ Set. new
    fragrances.add(Set.new)
    for each flower in flowers
        new_fragrances & copy(fragrances)
        for each fragrance in new_fragrances
            fragrance.add(flower)
        fragrances \leftarrow fragrances + new_fragrances
    return fragrances
```







 رخداده است. زمانى كه يكك مسئله با عبارتى از خودش تعريف مى شُوده بهصورت طبيعى يكك الگُوريتم
 دنباله با دو عدد ا شُروع مى شود و هر عدد بعـدى از طريق مجموع دو عدد قبل از از آن به دست میى آيد:

$$
1,1,2,3,5,8,13,21, \ldots
$$



## function fib(n)

if $n \leq 2$
return 1
return $\operatorname{fib}(n-1)+\operatorname{fib}(n-2)$



استفاده از باز گشت نيازمند خلاقيث براى دركك نحوهى بيان يكك مسئله در قالـب عباراتى از خودش

 آن يكسان بوده و زير كلمهى بين اين كاراكترها نيز متقارن باشدـ:

Recursion
(1170-1250) Fibonacci ${ }^{\text {r }}$


صنتحي .4 | مبانتى و مفاهيـم علوم كامبيوتر

```
function palindrome(word)
    if word.length \leq 1
        return True
    if word.first_char # word.last_char
        return False
    w & word.remove_first_and_last_chars
    return palindrome(w)
```


racecar شكل r-

 كلمات داراى يكك ياصفر كاراكتر هستند.



```
function recursive_power_set(items)
    ps & copy(items)
    for each e in items
        ps }\leftarrow\textrm{ps.remove(e)
        ps & ps + recursive_power_set(ps)
        ps }\leftarrow\textrm{ps}\cdot\operatorname{add}(\textrm{e}
    return ps
```












## 苗

استراتزُى جستجوى فراگير "مسائل را با بررسى تمام راهحل ها ماى كانديداى ممكن حل مى كند. اين





بغروشَبد، حداكثر سود را به دست مى آوريد.

خريدن به كمترين قيمت و فروْختن به بيشترين قيمث هميشّه ممكن نيست: ممكنت است كمترين قيمت بعل از بيسترين قيمت اتثاق بيفتد و سفر در زمان براى ما ممكن نبست. يكك رويكرد جستجوى فراگیير با



مىدانيم كه اين الگّكوريتم بايد O(n²

صنیهي AT | مبانتى و مناهيم علوم كامبيوتر
توضيح ساده: حمله جستجوى فراگير







كافى نيست. سُما بايد انتخاب كنيد كـدام كالا و1 حمىل كنيد. با دانستن وزن و
الرزش فروش هر محصيول، أنتخاب كدأم محصولات بيشترين درآملد ,1 به دنبال
خو/هد داشُت؟



function knapsack(items, max_weight)
best_value $\leftarrow 0$
for each candidate in power_set(items)
if total_weight(candidate) $\leq$ max_weight
if sales_value (candidate) > best_value
best_value $\leftarrow$ sales_value(candidate)
best_candidate $\leftarrow$ candidate
return best_candidate
برا






 بك


مسئلكى معروت شطر تج بيان مى شور:


سعى كتيـد راهح راههاى ثرار دادن وزبر ها بهحبر تـ صلتح آمبيز را نتشان میىدهـ.
' إلكُوريتمهانى نمانيى آن را احل بیى كتند.
https://code energy/8queens :

$$
\text { صفحهد } 94 \text { | مبانتى و معاهـبم علوم كامبيوتر }
$$


 وزيرها تحت حملكى ديِّرى قوار ندارند




-




صغتحه، فيرممكن مىسانز د:







## function queens(board)

if board.has_8_queens
return board
for each position in board.unattacked_positions
board.place_queen (position)
solution $\leftarrow$ queens(board)
if solution
return solution
board.remove_queen(position)
return False

 اسنغاده مى كند. نحوو




r-0-0 - ابتككار
 حرك ك , ا انتجام داديلـ هنوز





صنتح و9 | مبانى و مغاهيم علوم كاميويور


## حريصانه








شدتش ثيز كمثر ميشود.




function greedy_knapsack(items, max_weight)
bag_weight $\leftarrow 0$
bag_items $\leftarrow$ List. new
for each item in sort_by_value (items)
if max_weight s bag_weight + item.weight bag_weight $\leftarrow$ bag_weight + item.weight bag_items.append(item)
return bag_items
 رويك,


صغتحه 4A| مبانى و مغاهيم علوم كاميبوتر
در تفكر مححاسباتى، حريص بودن تنها يكك گناه براى شيطان بهحسأب نمى آين. بهعنوان يكك تاجر قابِلاعتماد، ممكن إست بخواهيد از روش حريصانه براى بستهبندى كولهيشتى إستفاده كرده يا به روش

حريصانه هسير سغر را تعيين كنيد:

فروشنلهى دورهگرد، مجدد: يكك فروشنله بايد ! $n$ شهر مفروض بازديد كرده
و در انتها به شهر شروع برگردد. كدام طرح سفر كل مسافت طى شده را كمينه
مى كند؟
 انفْجارى افزإيش بيل| مى كند. يیدا كردن راهحل بهينه برإى مسئلهى فروشندهى دورهگرد با چند هزار شهر بسيار پرهزينه (يا غيرممكن) الست '. ولى شَما همهحنان به يكك مسير نياز داريد. أينيكك الڭگوريتم حريصانه

ساده برإى اين مسئله است:
|. نزديكك ترين شهر بازديد نشده رابازديا كن. Y. تا زمان بازديد شدن تمام شُهرها إدامه بده.

آيا مىتوانيد به يكك راه إبتكارى بهتر از رويكرد حريصانه فكر كنيد ا اينيكك سؤال پ夫وهشى فعال بين
دانششمندان كامييوتر است.


شكل ץ-ף: مسئلهى فروشندهى دورهترد (دريافت شده از http://xkcd.com)
 زمانى بهتر از نمايّى بيدا كينيم.


زماني كه حرص بر قلـوت ثملبه مي كنل


 ابتكا,






!ين مسئله بـهسادگى حـل میشو $2:$

السـت انتشخاب و T T ا ل به هـم وصل كن.
Y Y Y







شكل ب-• • : حل مسئلهى شبكهى برق با انتخابهای حريصانه

صفشح4 | مبانتى و مفاهيمب ملوم كاميبوتر

- 9 - 7-




 دست آبـ.

9




 -

```
function merge_sort(list)
    if list. length = 1
        return list
    left }\leftarrow\mathrm{ list.first_half
    right & list.last_half
    return merge(merge_sort(left),
        merge_sort(right))
```


 فرا:خو انتى میى


 merge_sort


 فرانوو انتى عمليات زير را انجام مىدهدل:








صنحه | مبانى و مفاهيم علوم كامييوتر

تحام r تقسيهم: تابع merge_sort دو بار و هر بار با n/2 عنصر فرآخوانى مىشود.
درمىىيابيم $2 \times \mathcal{O}(n / 2)=\mathcal{O}(n)$ اسـت.

درمى يابيم $4 \times \mathcal{O}(n / 4)=\mathcal{O}(n)$ استـ.

فرانخوانى میشو د. درمىيابيم
 ادغامى بهصورت

شمارش گَامها: چحطور مىتوانيم مقندار



$$
\frac{n}{2^{x}}=1 \rightarrow 2^{x}=n \rightarrow x=\log _{2} n
$$



 $\log _{2} n \times \mathcal{O}(n)=\mathcal{O}(n \log n)$ ازاينزو
 الْگُوريتمهای خحطى
'



نصل T:استراثئى | صغحه VT

$$
\begin{aligned}
& \text { كاميبونر سربعتر انگگوريتم } \\
& \text { به بإيان میرسد (جدول ب- با). }
\end{aligned}
$$



| تعداد حامهاى تقسيم موردنياز | $\log _{2} n$ | اندازه ورودى (n) |
| :---: | :---: | :---: |
| F | r/Mr | 1. |
| $v$ | 9194 | 1.. |
| 1. | 1.1. | $1.0 \%$ |
| $r$. | 19/9r | 1....... |
| $r$. | ra/^a | 1.0....... |


 مى كنثن.

| خطى لتُّاريتمى | درجه | اندازهه ورودى |
| :---: | :---: | :---: |
| Y | ^1 ${ }^{\text {¢ }}$ | 199 (كشورهاى دنى |
| r ir دقيقه | rry دقبقه | ( ${ }_{\text {FF }}^{\text {هF }}$ |
| 108 دقيقه | A ساعت |  |
| ¢ 4 ساء | r | ( ميليون (ساكنان هاوايّى) |
| $9{ }^{9}$ | 11 | 19 ميليون (ساكنان فلوريدن1) |
| jو4 | ها هال. | . |
| ها | ها هزار سال. | V/ه ميلبارد (صفحات وب روى ابنترنت) |



 بِردازيم كه پيشتر سعى كرديم با جستجوى فراگير آلها وا حل كنيم
صفهي VF مبانتى و مغاميم علوم كاميويتر

تقتيم و سل وويكرد بهترى براى مسئلنى بهترين تجارت (بخش
 اول و سهس در بخش دوم. بهترين تحجارت در كل دور ن نيز بهصورت زير حسـاب مىشود:

「. بهترين تجارتى كه خريد آن دو بخش اول فروش آن در بخش دوم انجام مى شور2.



function trade(prices)
if prices. length $=1$
return 0
former $\leftarrow$ prices.first_half latter $\leftarrow$ prices.last_half case $3 \leftarrow \max$ (latter) - min(former) return max (trade(former), trade(latter), case3)

 خروجى هاى آن ها هستن



 ادغامى (شّكل



## تقسيه و بستهبنلـى




- • هعدار
- مغدار • ارز
 كولهيشتى با ظرفت C از طريق انتخاب از بين n كالا با با
 ندهد. اين معدار برابر است با

$$
\begin{aligned}
& \text { r. } k\left(n, c-w_{n+1}\right)+v_{n+1} \text { اگر كالاى اضافه انتخاب شُود. }
\end{aligned}
$$



 $K(n, c)=\max \left(K(n-1, c), K\left(n-1, c-w_{n}\right)+v_{n}\right)$


صنحك VY | مبانى و مفاهيم علوم كامبيوثر

 تكرإرى، كارايى ,' افزائـ دهيم.

 شماره ع و 0 وزن 「 و ساير كالاها وزن ا دارند

## - Y- $\boldsymbol{-}$





## بهاجاطرسپارى فيبوناحیى






 Dynamic Programming


Memoization ${ }^{*}$

```
M\leftarrow[1=>1;2 F 2]
```

function dfib(n)
if $n$ not in $M$
$M[n] \leftarrow \operatorname{dfib}(n-1)+\operatorname{dfib}(n-2)$
return $M[\mathrm{n}]$

 كه مججداًاً محاسبه نشدهأند



صفخه VA | مبانى و مفاهيم علوم كاميويوتر

## به خاطرسپارى كوله پششتى


 كرد. اين امر منجر به كاهش تعداد محاسبات مى گردد.




## بهترين تجارت پايين به بالا








اجازه بدهيد مسئلهى بهترين تجارت (بخشت ش- ب) را به اين روش حل كنيم.


B(1)=1 =1 ونى اگَر در روز دوم بفروشَيد، B(2 میواند ا با بَ باشد:

 می كنيدهـ
Top-Down ${ }^{r}$ Bottom-Up ${ }^{\text {r }}$


- $P(3)<B(2) \quad \rightarrow B(3)=3$
- $P(3) \geq B(2)$ (2) $\rightarrow B(3)=B(2)$




$$
B(n)=\left\{\right.
$$

با داششن تمام زوجهاى [
 function trade_dp(P)
$B[1] \leftarrow 1$
sell_day $\leftarrow 1$
best_profit $\leftarrow 0$
for each n from 2 to $P$.length
if $\mathrm{P}[\mathrm{n}]<\mathrm{P}[\mathrm{B}[\mathrm{n}-1]]$
$B[n] \leftarrow n$
else

$$
B[n] \leftarrow B[n-1]
$$

profit $\leftarrow P[n]-P[B[n]]$
if profit > best_profit
sell_day $\leftarrow n$
best_profit $\leftarrow$ profit
return (sell_day, B[sell_day])



صفحه •人 | مبانى و مفاهيم علوم كامييوتر

الگُوريتم نيز O(n) O است زيرا تعداد عناصر بردار كمكى B برابر با تعداد عناصر ورود است. دو بيوست

فضايىى صرفهجويى كنيد.

## شاخ

بسيارى مسائل شامل كمينهسازى با بيشبنهسازى بكك مقدار هدف هستند: بِيدا كردن كوتاهترين مسير، به دست آوردن بيشترين سود و غيره. اين مسائل را مسائل بهينهسازى ' مى نامند. وقتى راهحل دنبالةهاى از انتخاببها است، معمولاً از استر اتزٔى به نام شاخه و و حد



## حدهاى بالا و هايين

 تعريف مى كند. يكك حد پايين عحد|قل معدار مورد انتظار است: اين حد تضممن مى كند معدار موردنظر برابر يا بيستر از عدد تعيينشده است است.










Optimization Problems
Branch and Bound ${ }^{r}$
Upper Bound
Lower Bound ${ }^{\text { }}$
function powdered_knapsack(items, max_weight)
bag_weight $\leftarrow 0$
bag_items $\leftarrow$ List. new
items \& sort_by_value_weight_ratio(items)
for each i in items
weight $\leftarrow \min (\max$ weight - bag_weight,
i.weight)
bag_weight $\leftarrow$ bag_weight + weight
value $\leftarrow$ weight * i.value_weight_ratio bagged_value $\leftarrow$ bagged_value + value bag_items.append(item, weight)
return bag_items, bag_value




## شاخه و حلد حو مسئلهى كولّهشتى


 greedy_knapsack |متسان كنيم:

| حالاكثر ظرفيت | ثسبت إزغ به وزن | وزن | اوزش | كال8 |
| :---: | :---: | :---: | :---: | :---: |
|  | $f /$. | $\checkmark$ | r. | A |
|  | f/VQ | ${ }^{\prime}$ | 19 | B |
|  | $N \cdot$ | Y | 19 | C |
|  | $\gamma /$. | 0 | If | D |
|  |  | $r$ | IT | E |
|  | $4 / 2$. | r | 9 | F |


مسائل بهينّهسازى استفاده مى شود.
صفتهه AY | مبانى و بغاهیبم علوم كاميوتر

F52 52 |, 39 ,


 كاللا هأى درون آن را انشانْ مىدهد.
 (1, Dr/99




 :3,13

 بر بسى خود را با تُقسيم انين زيرمسئله ادامه بيدهيم:





رالز جستجوى خود حذف كتيم.



 r. r.r.




 میى كيبم.
صفخه AF | مبانى و مغاميم علوم كامييوتر

## نتيجه گيرى

حل مسئله عبارت از بررسى فضاى راهحلهاى ممكي آلن براى يافتن مورد صحبح است. راههاى متعددى را براى اين كار آموختبم. سادهترين آنها جستجوى فراگير است: بررسى تمام عناصر در فضاى جستجو بهصورت تككبهنك.

 اين حالات، استفاده از برنامهنويسى بويا براى اجتناب از تكرار محاسبات مشابه اهميت دارد. ديد يم كه عقب گرد هجگونه مى تواند برخى از انواع جستجوى فراگير را بهينه كند. برای مسائلى كه



 قابل انجام بر روىدادهها باد خواهيم گُرفت.
مراجع

- Algorithm Design, 1st Edition, by Kleinberg - Get it at https://code.energy/kleinberg
- Choosing Algorithm Design Strategy, by Shailendra Nigam
- Get it at https://code.energy/nigam
- Dynamic programming, by Umesh V. Vazirani

O Get it at https://code.energy/vazirani

## فصل

## Sols

برنامهنويسان خوب به ساختارهاى داده و روابط بين
آنها توجه مى كتند.

- لينوس توروالدز'

كتترل دادهها در علوم كاميوتر اهميت زبادى دارد: فرايندهاى محاسباتى از اين عملبات بر روى




 مفهومى كه به آن انتزاع ع' انواع دادها
 راهمهاى مختلف ساختاردهیى دادهاها دا در هانظه. $\qquad$
ولى قبل از شيرجه زدن در اين مطالب، اجازه بدهيد ابتدا معنى عبارات (انتزاع، و ا(نوع دادهاى، را


(1969-) Linus Torvalds



,انندگى كند.




html $\leftarrow$ fetch_source("https://code.energy")
2





- ئوا









Procedural Abstraction



بسبارى كار ديعگ, الــت
Data Abstractions *
Data Type ${ }^{\wedge}$ String ${ }^{\text { }}$

هر نوع دادماى مرتبط با بكك مجموعهى خاص از رويهها است. رويههانيى كه بر روى متغيرهاى كا ذخيرهى لُبست كار مى كنتد متفاوت از رويههائى هستند كه بر روى متغيرهاى ذخيرهى متجموعهها كار


## ع- ا - انواع دادهاى مجر د



 مـخفى مى كند.

 انواع ADT , ار ائه مى كنتد، استفاده مى كنيم.



 بهصورت مستثيم حافظهى كامیيوتر را دست كارى نمى كنـمب.

## امتيازات استفاده از

 مديريت دادهها، فقط بر تصوير اصلى تمر كز مىى كنبد: فرايند حل مسئلهى الُحوريتّم. اننططاف: راههاى زبادى براى ساختاردهى دادهها در حافظه وجود دارند كه منجر به پيمانههاى مختلف مديربت داده براى بك نوع دادهاى مشابه مىشوند. ما بابد بهتريت مورد را براى وضعيت موجود
 مى توانيم روش ذخيرهسازى دادهها و دست كارى آنها را فقط با استفاده از بك بی بيمانهى مديريت دادهى متفاوت عوض كنبم. شبيه به خودروها: خودروهاى النكتريكى و خودروهاى گازسوز همڭگى واسط رانندگى يكسانى دارند. كسى كه بتواند يكى را براند، بهراحتى مى تواند خودروىى ديگرى را نيز براند.
صفحه M | مبانى و مفاهيم علوم كاميوتر

قابليت الستفادهى مجدد: مىتوانبم از بيمانههأى مديريت دادمى يكسان در بروزءّههاى نيازمند

 از بيمانهى Set در هر دو الكَّوريتم استفاده كنيم.

سازماندهى: معمولًا بايد با جند بن نوع داده كار كنبم: اعداد، متن، مختصات جغر افبايّى، تصاوير و





راحتى: ما مى توانيم يكك پِيمانهى مديريت داده را كه توسط شخخص ديگَرى كدنويسى شده است،

 مديريت دادهها لازم نيست.

رفع خطاها: اگر از يكك پِيمانهى مديريت دادمى بدون خطا استفاده مى كنيب، كد شما عارى از خططاهاى مربوط به مديريت داده خواهد بود. آرَ در يكك بِيمانهى مديريت داده خططانى بيدا كرديد،


## 片

برای حل بك مسئلهى محاسباتى، دركك نوع دادهاى كه روى آن كار مى كنبد و عملباتى كه نياز داريد بر روى آن انجام دهيد بسبار مهم است. تصمبم گيرى در مورد ADT مورداستفاده به همان اندازه

 برنامنويسى بهصورت درونى آورده شدهاند.

Separation of Concerns
Spaghetti Code ${ }^{\text {r }}$

## انواع دادهاى اوليه


 عملبات عمومى مرنبط با آنها (جمع، تغريق، تقسبم) هستند. اغلب زبانّها داراى شستّتيانى داخلى براى


يشته
بك تودمى كاغذ بر روىهم را تصور كنبد. مىتوانيد بكك ورق را در بالاى اين توده قرار دهيد بي


 بشُته بابد حداقل اين دو عملبات را ارائه دهد:
• عمليات () بازيابيى و خلرج كردن عنصر بالايبى ششتّه.
 تعذاد عناصر موجود در بشتنه در لـحظهى جارى



 شپشته خلارج و آن وا معكوس مى كند.




Last In First Out ${ }^{*}$
صفته •9 | مبانى و مغاهيم علوم كاميووتر

 مانده است. گیِج نشويد، صف درست شبيه به صفـهانى مردم منتظر در رستوران در زندگى واقتى استا عملبات ضرورى صف عبارتاند از:

# - <br> عمليات () (dequeue: خلرج كردن عنصر از ابتداى صف. 

صف از طريق سازماندهى دادهها بهصورت FIFO 'عمل مى كند، زيرا اولبين (قديمىترين) عنصرى كه وارد صف شُده است همبشه زودتر از بقيه خارج مى شُود.

 فكرى، به اين فكر كنيد كه اكَر رستوران بيتز ای شُما طورى طراحی شُده باشّد كه سفارشها وا وا با استفاده


صف اولويت

 صف اونويت هستند. موارد اضطرارى اونويت بيشترى دازند و مستقيماً به ابتداى صفت فرستاده مىشوند،


- عمليات enqueue (e, p) اضافه كردن عنصر e به صف بر اساس سطح اونويت p.
- عمليات (dequeue: خارج كردن عنصر از ابتداى صف و برگر راندن آن.

 سازماندهى مى كند. هر فرايند منتظر در صف داراى يكك سطح اولويت است. سبستمعامل يكك فرايند را

First In First Out
Priority Queue ${ }^{\text {r }}$


 صف براى مدت طولانىترى منتظر مىمانند. فرايندهانيى كه از صفحهك كلبد ورودى مى گيرند معمولاًا



در زمان مرتبسازى تعادى عنصر، گاهى اوقات ممكن است به انعطاف بيشترى نباز داشته باشبد.
 عناصر در هر موقعيتى داشته باشد. در اين موازد، ليست' به كار مى آيد. عملباتى كه بهطورمعمول در

ليست تعريف مى شُوند عبارتاند از:

$$
\begin{aligned}
& \text { • عمليات insert (n, e) درج عنصر e در موفعيت n. } \\
& \text { • عمليات remove(n): خارج كردن عنصر وانع در موقعيت n. } \\
& \text { • عممليات (n) (net دريافت (خواندن) عنصر وانع در موقعبت n. } \\
& \text { • عممليات (sort): مرتبسازى عناضر لبست. }
\end{aligned}
$$

- عمليات slice(start,end): برگرداندن بك زيرليست كه با عناصرى كه از

موقعبت start سُروعشده و وتا موقعبت end ادامهدارند. - عمليات (reverse( معكوس كردن ترتبب عناصر ليست.

ليستها بكى از بِر كاريردترين انواع ADT هستند. بهعنوان نمونه، اكَر نياز به ذخيرهسازى لينككهاى

 حذف كنيد.


صفحه ar | مبانى و مفاهيم علوم كاميووتر

شُدن دركك كد مى شود: اين كه بدانيم يكك متغير از نوع شستّه است به ما كمكك مى كند نحوهى جريان ورود و خرووج دادهها را بهتر بفهميم.

## ليست مرتبشده

بك ليست مرتبشده ' زمانى مفيد است كه نياز به نگهدارى ليستى همبشُ مرتب از عناصر داشته
 آن بهصورت دورهاى)، از يكك لُبست مرتبشُده استفاده مى كنبم. فرايند درج اين نوع لنيست باعـ
 نمى دهند: تضمين مىشود كه لُيست هميسه مرتب است. تعداد عمليات لُيست مرتبشـده كمتر از ليسـت است:

> -

## تُاشت

 بك شىء مقدار. شُما مىتوانيد با دادن كلبد در نگّاشت يَرسوجو كرده و معدار متناظر آن را دريافت

 مرتبط با وى را برمى گرداند. عملبات نگاشت عبارتاند از:

$$
\begin{aligned}
& \text { • عمليات set(key, value): اضافه كردن بكك نگاشت كلبد- مقدار. } \\
& \text { • عمليات (delete(key): حذف كليد key و مقدار متناظر با Tن. } \\
& \text { • عمليات get(key): بازيابى معدار متناظر با كليد key. }
\end{aligned}
$$

متجموعه
 تبيوست III مطرحشدهاند. زمانى كه ترتيب عناصر مورداستفاده اهميتى ندارد از مـجموعهها استغاده مىشود، يا زمانى كه مى خواهيد مطمئن شويد يك عنصر در گروه نكرار نمىشود. عملبات معمول

مـجموعهها عبارتاند از:

- عمليات (add(e): اضافه كردن بكك عنصر به مجموعه با ابجاد بكك خطا در صورت

تكرارى بودن عنصر [وجود آن در متجموعه].
عمليات delete(e): حذف يكك عنصر از متجموعه.

 ساختاردهـى مىشُوند.

## ع- ع-

بك نوع دادهاى مجرد فقط نحوهى عمأكرد مكك نوع دادمایى مفروض را شُرح مىدهد. ائ بديده،



 انتخاب بكك بيادهسازى ADT كه از بهترين ساختارهای داده بر اساس نباز شما استفاده مى كند، برایى ساخخت برنامههاى كاميبوترى كارا اهميت دارد. در ادامه، معمولترين ساختارهاى داده را بروسى كرده و نقاط قوت و ضعف آنها را مى آموزيمب.
( آرايه
 يك فضاى ثيوسته در حافظهى كاميبوتر و نوشّتن عناصرثنان بهصورت ترتيبى در آن فضا است. انتهاى اين دنباله با يكك نشانهى خاص NULL مشخص میشود.
صنته \&

 خاتّهى $s+(b \times n)$ در حافظظه به دسـت مى Tيد.

## محتواى حافظه



آدرس هاى حافظه








 عناصر بعداز آن را يكك كام بـه سهـت جلو منتقل كنيد.

## ليست ثيونلىى

در ثيستههای پيونلىى



Dead ${ }^{\text {a }}$
Link Lists ${ }^{r}$
Pointer ${ }^{r}$












صنحه و9 | مبانتى و مغاههبم هلوم كاميبوتر

## ليست پيوثلـى دوطـرفه











## آرايهها در مقايسه با ليسستهایى پيونلى





بين سآختارهاى داده جانججا شُونُد.






- به درج /حذف بسيار سريع در ليست نياز داشتته باشيد. - به دستيابى تصادفى و بدون ترتيب به عناصر نياز نداشته باشيد.
- عناصر را در وسط يك ليست درج يا حذف مى كينـد.

نمى توانيد اندازهى دقيق يُيست را تعيين كنيد (ليست در زمان اجرا نياز به افزايشّ يا كاهشّ
اندازه داشته باشد).

آرايهها در شر ايط زير نسبت لُيستهاى ييوندى به ارجحيت دارند:

- بهصورت مكرر به دستيابى تصادفى و بدون ترتيب به عناصر نياز داشته باشيد.
- به كارايى بسيار بالا براى دستيابى به عناصر نياز داشته باشيد.
- تعداد عناصر در زمان اجرا تغيير نمى كند، بهطروى كه مى توانيد بهسادگى فضايى متوالئى در حافظهى كاميويتر تخصيص دهيد.

درخت
شبيه به لُيستهاى بيوندى، درخـت نيستند براى ذخيرهسازى استفاده هى كند. سلولها داراى اشارهگرهايى به ساير سلولها هستند. برخالف
 ساختارى شبيه به يك درختدارند. درختها بهصورت خاص براى دادههاى سلسلهمراتبى مانند ساختأر ثوشهبندى فايل '، يا زنجيرهى دستورات در يك ارتش مناسب هستند.


شكل ع-0: درختى برای ديشههای زبانهایى هندو -ارویايیى

$$
\text { صنتح، } 1 \text { | م مبانى و مغاهيم علوم كامييوتر }
$$













LEVEL 4

Node ${ }^{1}$
Edge ${ }^{r}$
Root Node ${ }^{r}$
" ${ }^{\text {T }}$
Siblings ${ }^{\circ}$
Ancestors ${ }^{5}$
Descendants ${ }^{*}$
Leaf Node ${ }^{\wedge}$
Path ${ }^{\text {a }}$
Level ${ }^{\prime}$
Height "
Forest ${ }^{\text {ir }}$

درخت جستجوىى دودويى
يك دوخت جستجوى دودويع ' يكى نوع خاص درخت است كه بهصورت كارا مىتوان در آن آن جستجو انجام داد. گرْها در يكك درخت جستجوى دودويى حذاكثير دو فرزند دارند. و موثعيت
 والدّ، گرههاى فرزند سمت راست بايـد بزر گیتر باشند.


اگَ اين ويزگى در درخت رعايت شوده جستجوى يكى گره با كليد / مقدار مفروض در درخت ساده
است:

```
function find_node(binary_tree, value)
    node \leftarrow binary_tree.root_node
    while node:
        if node.value = value
            return node
        if value > node.value
            node \leftarrow node.right
            else
        node \leftarrow node.left
    return "NOT FOUND"
```

بر ای اضافه كردن يكك عنصر، مقدارى را كه مىخواهيم در درخت وارد كنيم جستجو مى كنيم.

را به گره جذيد اشاره مىدهيم.

```
function insert_node(binary_tree, new_node)
    node \leftarrow binary_tree.root_node
    while node:
        last_node }\leftarrow nod
        if new_node.value > node.value
        node }\leftarrow\mathrm{ node.right
        else
        node }\leftarrow\mathrm{ node.left
    if new_node.value > last_node.value
    last_node.right }\leftarrow\mathrm{ new_node
    else
    last_node.left \leftarrow new_node
```





 رادارد.


شكل 乏-A: يكك درخت جستجوى دودويى واحد با يكك قالب بسيار ثامتوازن، قالب نسبتاً متوازن و قالب كاملاُ متوازن





## function build_balanced(nodes)

if nodes is empty return NULL
middle $\leftarrow$ nodes. length/2
left $\leftarrow$ nodes. slice $(0$, middle -1$)$ right $\leftarrow$ nodes.slice(middle +1 , nodes. length) balanced $\leftarrow$ BinaryTree. new (root=nodes[middle]) balanced. left $\leftarrow$ build_balanced (left) balanced.right $\leftarrow$ build_balanced (right) return balanced

 جستجوى بك عنصر در يكك درخحت جستتجوى دودوبى با عمق أن نسبت مستقّبم دار2. در بدتربن








صفحه I+Y| مبانى و مغاهيم علوم كامييوتر

براى مديريت كاراى درختهاى دودويى با ميزان تغييرات زباد، درختهاى دورياى دودويى




 كه دلبل ابن امر خودمتوازن بودن درخت ديت است است







 درختهانى B بهصورت معمول در بإِكاههاهى داده استغاده مى شونون.







Self-Balancing Binary Tree Red-Black Tree
 در ايتشرنت موجود استـ. Binary Heap *

$x \leq y \leq z$
 كمينذ (وايين)
 كار كتيد، از هرم استفاده نمائيـد.







$$
\text { صغحه } 1 \text { | | مبانى و مغاهيم علوم كامييوتر }
$$

جدول درهمريزیى

 با فقط • ا عنصر باشّبد.



















 جلدولها براي داشتن عملكرد مناسب نياز به حجم زيادى از حافظهى متوالى دارند.

## نتيجهـيّيرى

 مىدهند. ساختارهاى دادهى متغاوت نيازمند عمليات مـختلف براى ذخيرهسازى، حذف، جستجو و اجرا بر روى دادههاى ذخيرهشده هستند. هيجّ راهكار واحدى وجود ندارد: شما بابد تصميم بِيريد بر اسأس وضعبتى كه بيش رو داريد، از كدام ساختارداده استفاده كنيد. آمبوختم كه بهجاى استفادهى مستقيم از سأختارهاى داده در كد خودد، بهتر است از انواع دادها مجرد استفاده كنبم. اين كار موجب مجززا سازى كد شُما از جزئبات كار با دادهها مىشود و به شُما الجازه مى دهل بهراحتى و بدون نياز به تغيير كدى ساخختارهاى دادهى موجود در بر برنامه خيود را تغيير دهيد.


 بهصورت درونى از اين ساختارها بِشتيبانى مى كنتد.

- Balancing a Binary Search Tree, by Stoimen
- See it at https://code.energy/stoimen
- Cornell Lecture on Abstract Data Types and Data Structures, - See it at https://code.energy/cornell-adt
- IITKGP nodes on Abstract Data Types
- See it at https://code.energy/iitkgp
- Search Tree Implementation by "Interactive Python"
- See it at https://code.energy/python-tree



## فصل ه

## الكوريتهها


 بلكه هجون ابن كار بكك تجربهى هنرى شبيه بـ سرودن شعر با ساختن يكك ثططعهى موسيقى است. - دانلد كتوث
 مىشوبد كه انر اد بسيار ديخگ, بر روى مسئلهالى مشابه با آن كار كردهاند. شانس در ابن اسـت آنها



$$
\text { را بر رسى خو اهيـم ك, } 2 \text { ك: }
$$


بسسرعت عنصر مور دنياز شما ر! جستجّو مى كتند. با سر افـفها كار مى كتند.



 انواع الگُورينمها مسخصوص زمينههاى خاص مطالعاتى هستند: بردازش تصوبر، رمزنگارى، هوش
(1938- ( Donald Knuth '




صنهحه | | م مبانى و مفاهيم علوم كامِيوتر



-     - ا - مرتبسازى



 مرتببسازى التتخابيى (بخشى Y-1) يكى از اين الكُوريتمها است. اين الكُوريتمى است كه مردم از آن



 صورت بز, گُ بودن آن، بسيار كارا الست:

```
function insertion_sort(list)
        for i}&2\mathrm{ ... list. length
        j}\leftarrow
        while j and list[j-1] > list[j]
            list.swap_items(j, j-1)
            j
```

اين الگُو ريتم را با كاغذ و قلم و بر روى يكك ليسـت تقريباً مرتب از اعداد اجرا كنيد. براى ورودى هايیى كه تعداد كمى از عناصر آنها مرتب نيستند، insertion_sort از نوع




[^1] مرتب كردن بكك دسته كارت بهصورت زير است:

رسيده است. در غير اين صورت به گام r برو.




 مرتبشده به دست آبـ.
قاتى كردن يك دسته كارت و دنبال كردن اين گّامها راه بسبار خوبى براى باد گيرى مرتبسازى
 حال شما آمادهى مواجهه با اغلب مسائلى هستيد كه شامل فرايند مرتبسازى هستند. ما در اينجا
 وجود دارند كه هر يكك مناسب سناريوهانى مرتبسازى خاص هستند.

## - -

يكى از انواع عمليات كلبدى در محاسبات، گُتّن به دنبال اطلاعاتى ثحاص در حافظهى كاميووتر

 بيدا كنى؛ يا همهى عناصر را برزسى كنى و بفهمى عنصر موردنظر آنجا نيست.








شكل ه-1: :يكث الجر ايى ثموثه از مرتبسسزَى سريع

 نصف فضاي جستثجو , ا كنار مى گّلرد:

```
function binary_search(items, key):
    if not items
        return NULL
        i & items.length / 2
        if key = items[i]
        return items[i]
    if key > items[i]
        sliced \leftarrow items.slice(i+1, items.length)
        else
        sliced \leftarrow items.slice(0, i-1)
        return binary_search(sliced, key)
```

 اين بدلن معنى است كه بر ای n عنصر، شُّامل تعدلد ثابتى عملياث است، بنابر اين الكُوريشّم از نوع يككتر يليون عنصر با كارايى بالا جستجو كنيد.



 تريليون عنصر انجام بدهيد، تعداد عمليات ثُابت اسـت، يعنى فرايند ازلمحاظ زمان (O) O الست. كاملأ ثابثت.

## (أه-




الرتباطات بين Tنهـا هسشند) و غير ه اسستفاده مىشُوند.

صفحه |l| | مبائى و مفاهيم ملوم كامييوتر

## جستجو صر تَرافـهاها






## 




 (بخشّ ب-




جيمايسن، از صف نحارج مى كنيم.
Depth-First
Breadth-First
Depth-First Search (DFS)
Breadth-First Search (BFS)

```
function DFS(start_node, key)
    next_nodes }\leftarrow\mathrm{ Stack.new()
    seen_nodes & Set.new()
    next_nodes.push(start_node)
    seen_nodes.add(start_node)
    while not next_nodes.empty
        node \leftarrow next_nodes.pop()
        if node.key = key:
            return node
        for n in node.connected_nodes
            if not n in seen_nodes
                    next_nodes.push(n)
                seen_nodes.add(n)
    return NULL
```

function BFS(start_node, key)
next_nodes $\leftarrow$ Queue. new()
seen_nodes $\leftarrow$ Set. new()
next_nodes.enqueue(start_node)
seen_nodes.add(start_node)
while not next_nodes.empty
node $\leftarrow$ next_nodes. dequeue()
if node. key $=$ key:
return node
for n in node, connected_nodes
if not $n$ in seen_nodes
next_nodes.enqueue ( $n$ )
seen_nodes.add ( n )
return NULL
 2ارند: يكى از صف و ديگرى از پيثته استفاده مى كند.









.
شكل 0-זّ: جستجوى اولعمق يا DFS (كرفتهشده از http://xked.com)

میتوانيد در شيكل ه-ب بيينيد كه انتخاب بك روش بِيمابش غلط مىتواند نتابج وخيمى به دنبال دانتشه بابشد.

## 




فصل ه: الكُوريتمها 110 صفتحه

بيُيريد:
 دادهاند. برجهاى واقع در مـجاورت همم بابل بهمنظور اجتناب از تداخلز، از فر كانسسهاى مختلف استفاده كتند. در كل تجهار فركانس براى انتخابِ وجود

دارند. به هر برج كدام فر كانس را نسبتت مىدهيد؟



هر فر كانس نيز مبك ونگگ اسـت.



 كرده و سعى كنيد اين مسئله را خودتان حل كنيد. مىتوانيد اين كار رادر لUVA، يكك داور بر خطا كه
 باشُل به شما اعلام خحواهل كرد. در اين صورت، كد را ازلدحاظ زمان اجرا در مقايسه با كد ساير افراد نير
 امتحان كنيد. شما تاكنون فقط يكى كتاب 1 خحواندهايد. اوسال كد براى يك داور بر خطط به شما تجربهى عملى موردنياز را براى تبديل شدن به يكك كدنويس بثزرگَ مى دهد.

 حتى از دادمهأى ترافيكك براى افزايش وزن يالْهاى نشاندهندهى خيابانهاى شُلوغ نيز استفاده مى كتند.




$$
\text { صفنحه } 119 \text { | مباتى و مفاهيم ملوم كامييوتر }
$$





 كند.












شكل 0-0: يیدا كرقن كوتاهترين مسير از JFK به GVA با دا ئكسترا

صفحه 111 | مبانى و مفاهيم علوم كامييوتر

## رتبابندى صفحه




التوريتهم رتبهبندى صفحه ' است.

 گراو مدل كردند: صفحات وب گرْها و بيوندهاى بين صفحات وب بالنها هستند.



 امتيازات نابت شوند تكرار مىشود. امتشاز تثبيتشدهى هر صفحهه، PageRank آن نامبده مىشود. با استفاده از التُوريتم PageRank براى تعيين اهمبت صفحهى وبب، گو گّل بهسرعت بر ساير موتورهایى

 كاربر را محاسبه كنيه. به نظر شُما كاربرانى كه رتبه صفحهى بالانترى دارند احتمالاًا افراد مهمى هستند؟

## - 0- تحقيق در عمليات

 عملبات خود اتخاذ مى كرد. آنها ابزازهأى تحلبلى بسبارى براى كشف بهترين راه براى هماهنگگ كردن عمليات نظامى خود ايجاد كردند.

$$
\begin{aligned}
& \text { (1973 - ) Sergey Brin }{ }^{「}
\end{aligned}
$$

"
Twitter ${ }^{*}$

PageRank Algorithm
(World War II ${ }^{\circ}$

اين تجريبات، تحقيق در عمليات 'نامگذارى شّد. اين سيستم رادار هشدار اولبّى بريتانيا را بهبود



 |هدافى مانند ميزان ضرر، ريسك با هزينه كمكك كند.


 مواد خام در بك تر كبب رامنىوان بهعنوان بك مسئلهى تحقين در عملبات در نظر گرفت.

مسائل بهينهسازى خطى

مسائلى را كه در آنها بتوان اهداف و و قبدها را با استغاده از معادلات خططى مدلسازى كرد، مسائل
بهينٔهسازى خطى ${ }^{\text {º }}$

$$
\begin{aligned}
& \text { دكوراسبون هوشُمند: دفتر شُما نباز به كابينت دارد. هزينهى كابينت از نوع X X برابر } \\
& \text { با با دلار است و } 9 \text { مترمريع مساحت متطع داتمته و } 1 \text { مترمكعب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مترمريع در دفتر خود وا كابينت كنبد. كدام نوع كابينت را بابيد بخريد تا تا حداكثر } \\
& \text { نضاى ذخيرهسازى را داشته باششبد؟ }
\end{aligned}
$$

ابتدا، متغيرهاى مسئله را شناسابى مى كنبم. ما به دنبال تعגاد كابينتها از هر نوع، براى خريد هستب؟؛ بنابراين:

> Operations Research
> Linear Optimization Problems
" ${ }^{\text {r }}$


صفته . IY | مبانى و مفاهيم علوم كامييوتر

$$
\begin{aligned}
& \text { • متغير x: تعداد كابينتهاى خريدارىشده ازنوع X X } \\
& \text { • متغير y: تعداد كابينتهأى خربدارىشُده از نوع }
\end{aligned}
$$

ما مى خواهبم فضاي ذخيرهسازى وا بيشينه كنبم. اججازه بدهيد فضأى ذخيرهسازى را z ناميده و آن را در قالب تابعى از x وy مدلسازى كنيه:

- $z=8 x+12 y$

حال بايل مقادبرى وا براى x وy انتخاب كنبم كه حداكثر مقدار ممكنن zوا ابجاد كنند. اين مقادير


 - قيد فضا: 72 • $6 x+8 y \leq{ }^{\text {• }}$


 دارد. شابد با جستجوى فراگير عمل كنيد: برنامهاى بنويسيد كه z zا براى تمأم معادير ممكن x و ول
 مى دهد، اما انجام آن با تعداد زيادى متغير غيرممكن است به نظر مى برس كه برای حل مسائل بهينهسازى خططى مانند اين مسئله، نبازى به كدنويسى نيست. شما


 دوياره اختراع نكنيد: يكك حل كتنده غيرمر كب آماده براى استغاده انتخاب كنيد. حل كتندههاى غيرمركب فقط از شُما مى خواهند تابعى وا كه بايذ بيشّينه (كمينه) شود، به همراه



فصل ه: الُكُوريتمها |صفته










مسائل جريان شبكه




$$
\text { كرد } \text { (inكل }
$$





صفُحه ITY | مباتى و مغفاهيم ملوم كامييوتر






 كاللهأى ورودى رادر شهر دريأفت كنّنده بيشينه میى سازد.





## نتيجه







- Introduction to Algorithms, by Cormen
- Get it at https://code.energy/cormen
- Algorithms, by Sedgewick
- Get it at https://code.energy/sedgewick
- Simple Linear Programming Model,by Katie Pease
- Get it at https://code.energy/katie



## فصل 9

## پايكاه داده



 سانختن راهحلمهاي ساده ولى زيبا.

- جإرلز بكمن'



 به عاملمهاى متخلف الجاز


 فصل ياد خواهيدي گَرفت:






(1924- ) Charles Bachman '


DataBase Management System (DBMS) ${ }^{\dagger}$
صفحه IY4 | مبانى و مغاهيم علوم كامييوتر

 انتخاب يكى از آنها مىتواند سخت باشد. اين فصل مرورى كلى بر انواع مختلف سبستمهاى بايگًاه دادمى موجود ارائه مى كند.


 كار دادها كاوى









## 


 دادهاى كه امروزه استفاده مىشوند، رابطهاى هستند.


 مشخص مى كتند. همـحثنين، ستونها مىتوانتد ساير محدوديتها را نيز تعيين كتند: اين كه براى هر سطر

Relational Database Systems Non-Relational Database Systems ${ }^{r}$

Data Mining ${ }^{r}$


 میى







## روابیا





| Date | Customer Name | Customer Phone Number | Order Total |
| :---: | :---: | :---: | :---: |
| 2017-02-17 | Bobby Tables | $997-1009$ | $\$ 93.37$ |
| $2017-02-18$ | Elaine Roberts | $101-9973$ | $\$ 77.57$ |
| $2017-02-20$ | Bobby Tables | $997-1009$ | $\$ 99.73$ |
| $2017-02-22$ | Bobby Tables | $991-1009$ | $\$ 12.01$ |







| سهارشات orders |  |  |  | مشتريان customers |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | Date | Customer | Amount | ID | Name | Phone |
| 1 | 2017-02-17 | 37 | 593.37 | 37 | Bobby Tables | 997-1009 |
| 2 | 2017-02-18 | 73 | \$77.57 | 73 | Elaine Roberts | 101-9973 |
| 3 | 2017-02-20 | 37 | \$99.73 | A |  |  |
| 4 | 2017-02-22 | 37 | \$12.01 |  |  |  |



 ID



 حتور

 كَا

$\qquad$
Foreign Key "





| دانشمندان كامييوتر computer scientists |  |  |  |  |  | برندكان winners |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | First | Last | Date | of Birth | Nationality | ID | Recipient | Year |
| 21 | Shafrira | Goldwasser |  | ULL | US | 59 | 21 | 2012 |
| 22 | Alan | Turing | 191 | 2-05-23 | UK | 60 | 28 | 2012 |
| 24 | Leslie | Lamport | 194 | 1-02-07 | US | 61 | 24 | 2013 |
| 25 | Michael | Stonebraker | 194 | -10-11 | US | 62 | 25 | 2014 |
| 26 | Whitfield | Diffle | 194 | 4-05-05 | us | 63 | 26 | 2015 |
| 27 | Martin | Hellman | 194 | 5-10-02 | US | 64 | 27 | 2015 |
| 28 | Silvio | Micali | 195 | -10-13 | IT |  |  |  |
|  |  |  |  |  |  |  |  |  |
| ID | Country Name |  | ID | Main contribution |  |  |  |  |
| IT | Italy |  | 2011 | Bayesian inference algorithms. |  |  |  |  |
| UK | United Kingdom |  | 2012 | Secure criptographic proofs. |  |  |  |  |
| US | United States |  | 2013 | Distributed computing systems design. |  |  |  |  |
|  |  |  | 2014 | Database systems design. |  |  |  |  |
|  |  |  | 2015 | Diffie-Helmann key sharing. |  |  |  |  |



Normalized
Normalization

## مهـ*


 امسك,

 كاركـى

 سـش شا




.




SELECT <field name> [, <field name>, <field name>, ...]
FROM <table name>
WHERE <condition>;



Schema Migration Script '



 میى كـد:
SELECT * FROM customers
WHERE age $>21$ AND name $=$ "John";
 .- WHERE



 (age)

SELECT country, AVG(age)
FROM customers
GROUP BY country
ORDER BY country;
 مینگّ -

مى'وربد.



 امـث ولى

صضتهن ITY | مبانى و مع.اهيم علوم كامييوتر

SELECT DISTINCT customers.name, customers. phone FROM customers
JOIN orders ON orders.customer $=$ customers.id WHERE orders.amount > 100.00;

اين ثرسوجو نام و ثلفن مشتريانى را كه سفارشات بالاى ••• دلار داشتهاند برمى گرداند. عبارت باعث مىشود اطلاعات هر مشّرى فقط يككبار در خروجى آورده شُود. دستور ييوند يا JOIN امكان پرسوجوهاى منعطف را به وجود مى آورد'، ولى اين كار هزينههايى نيز دارد. محاسبهى هيوندها هزينهبر است. آذها ممكن است همدى ثركيبات ممكن سطرهاى جدولهای مورداستفاده را بررسى كننـ. يكك مدير هايگاه داده بايد هميشه به تعداد سطرهاى جلدولنهاى مورد هيوند



## شاخص تمداوى

براى اين كه كليد اصلى يكك جدول مفيد باشُد، بايد بتوانيم در زمان ارائه شدن مقدار ID سريعاً دادهها
 وجود می آورد و به كمكك آن ID سطرها را به آدرس حافظهى مربوط به آن نگگشت مى كند. يك
 گره در درخت مرثبط است.

| ID | Name | Date of Birth | Nationality |
| :--- | :---: | :---: | :---: | :---: |
| 06 | Barbara Liskov | $1939-11-07$ | US |
| 10 | Peter Naur | $1928-10-25$ | US |
| 18 | Adi Shamir | $1952-07-06$ | IL |
| 21 | Ada Lovelace | $1815-12-10$ | UK |
| 15 | Bill Gates | $1955-10-28$ | US |
| 08 | Alan Turing | $1912-06-12$ | UK |
| 0 | Dennis Ritchie | $1941-09-09$ | US |

شكل T-


كليدهاى گگرهها همان مقادير فيلد موردنظر براى شاخخص گذارى هستند. براى بافتن يكك سطر با مقدار
 ذخيرهسازى را به دست آورده و از آن برایى واكشى سطر استفاده مى كنبم. جستجو در درخحت جستجوى دودويى


 ابن فيلدها نيز بسازد.

قيدهايى يكتايى ': شاخخصها اغلب بهصورت خود كار براى فيلدهايى كه داراى قيد بكتايىى هستند
 اطمينان از نقض نشدن قيد يكتايى جستجو كند. فهميدن اين كه آيا يكك مقدار در بك فيلد وجود داري

 عناصر، شاخخص گذارى فيلدهابیى كه داراى قيد بكتابيى هستند الزّامى استـ.
مرتبسازى: شاخصها در بازيبا سطرها بهصورت مرتبشده بر اساس فيلدهاى شاخصص گذارى
 سطرها را بهصورت مرتبشُده بر اساس نام و بدون متحاسبهى اضافى به دست بياوريبـ. وقتى از دستور


 فيلد بـون شاخحص دارند نِّذيرند.

 سطرها را بهصورت مرتبشُده بر اسأس كشّو مىدهلد، ولى همعجنان نباز داريد عناصر داراى كشّور مشابه


Uniqueness Constraints
Joint Indexes ${ }^{r}$

صنغح |H4 | مبانى و مفاهيم علوم كامييوتر
 ونى دادههاى مرتبشُّله بر اسأس جند فيلد را سريعاً برمى گردانثن.

كارايْى: در كل مىتوان گفت شاخخصها بسيار مغيد هستند: آنها امكان ثرسوجوى فوقسريع و
 شاخصر داشته باشيه؟ مشكل ابن اسـت كه در زمان درج يا حذف بكك سطر در يكك جدول، بهمنظور
 بهنگامسازى، درج يا حذو سطرها ازلـحاظ مححاسباتى بسيار ثرهزينه خحواهل بود (مبحت متوازن ساختي درخت را به باد داشته باشيد) . بهعلوه شاخحصها فضاى ديسك را بهعنوان يك منبع محدود اشغال مى كتند.




 در اين راه مى كند. بهعنوانمثال، اكَر بهصورت مكرر از پيايگاه داده در مورد افرادى با سن مغروض
 بهصورت مستقيم سطرهاى مرتبط با يكك سن خحاص را به دسـت آورد. با اين روش و با ا-جتناب از بررسى






 چرسوجوها و اضافه كردن شٌاخصصها، ثقط زمانى كه تفاوت ايجاد مى كتند، استفاده كنيد.

YO *)

1*5
ت

 ثوتد: كـــر : : . ك
 .

مـا بـ رلمی


的

START TRANSACTION;
UPDATE vault SET balance $=$ balance +50 WHERE id =2;
UPDATE vault SET balance $=$ balance -50 WHERE id =1;
COMMIT;
ـ共
(Stator $2 y^{*}+T-7$
.





 چگَونه يکى رزومه بنويسيم


از رونق (NoSQL استفاده كنيد
http://geek-and-poke.com شكل Y-0: دزيافت شلده از

مـخزن السناد





 انعطافــــنـيرى بيـيّترى أرائه دهند:

نياز به هيونـن سطرها نداريد.








 اين دادهـا را در امتاد تكرار كردرد.



محخزْ كَليد - مقّدار




Key-value Store'
صفحه ITA | مبانى و مفاهيم علوم كامبيوتر

از بإيكًاه داده واكشّى كرده و از آنها برایى توليد كد HTML إرسالىى برایى كاربر استفاده كند. در وب
 براى حل اين مشُكل، ما از بك مخزن كليد - مغدار بهعنوان بك مكانيزم ذخيرهسازى در حافظهى نهان استغاده مى كنيم. در اين متخزن كليد همان URL درخواست شده و و معدار كد نهائى HTML مرتبط با با
 مـخزن كليد - معدار و با استفاده از URL بمعنوان كليد بازيابى مىشود.
 ذخيرهسازى آن در حافظهى نهان فكر كنيد. البنه الزاماً نياز نيست از مخزن كليد - مغدار استفاده نماييد، بلكه مىتوانيد از هر بإيگاه دادهى ديگّرى نيز براى ذخيرهسازى در حافظهى نهان استفاده كنيد. فقط در

مـخزن كليد - معدار اهميت بيد| خو اهد كرد.

## یإيكَاههاى داده تَراف













 ذخيره كردن دادههاى حمل ونقل عمومى در يك تراف، مىتوانيد بهصورت مستغيم بهترين مسبرهاى


## كلاندآده




 خواندن را با سرعت انجام دهيد. تنوع دادهها به اين مغنى است كه دادهها داراى ساختيار قدرتمندى نيستند،

 حاشته باشبد، مىتوان آن را يك برنامهى كلانداده بناميد. بهمنظور اجرایى برخى از از موفقترين
 مورد موضوعى به نام اببر كلاندالده هستند: ذخيرهسازى و تحليل ميليونها ترابابت از دادهها.
(7ig Data
「




 r. Y. Y F.
صغته .|F| | مبانى و مغاهيم علوم كامييوتر



## NoSQL و SQL مقايسهى




 غيرساختقيافته را بهصورت سريع و كارا ذخيره كنبم. بدون نگرانى در مورد طرحوارههأى نابت و
 طبيعى تر بوده و كدنويسى آنها سادهنر است

 داشته باشيد، قدرت بيشّتر مسئوليت بيشّرى نيز به دنبال خواهلد داشت.

## 

 بإبگاه داده همكارى كنتد:

بايًُاههأى داده با صدها ترابايت داده. پيدا كردن يكك كاميبوتر واحد با خنين فضاى ذخيرهسازى غيرعملى است.
 واحدى قدرت شبكه يا پِدازش كافى براى مديريت جنين بار كارى ندارد.








## تكرار كك كنترل كننده"







## 






## تكراو جندكنترل سننلده"




[^2]







## بُخش بندى سر دن





هربوطه استمأده مى شود (شككل 9-1 1).



بخسبندى را بهصورت نكر ارى اتثجأم داد (شكل 9-1 (1).









شُكل 7-1 ا: تنظيمات بخشّبندى با سه تكرار در هر بخشَ

صغحه IF4 | مبانى و مفاهيم علوم كامييوتر

## ساز گارى دادههها








 كنيد.
سبستمهاى بِإيًاه داده ابزازهمايى براى كنترل ناساز گارى دادهها ارائه مى كتند. بهعنوان نمونه، برخحى از

 مى گردد. تراكنشها نيز بهصورت خاص مى توانتد موجب به وجود آمدن مشكالات مربوط به كارابى در
 بخش عمدها لى از دادهها مى كتند.



 برمى گردانند. در بسيارى حالات، كار كردن با سازگارى مشروط مشُكلى به وجود نمى آورد. بهعنوان نمونه، اگَر در



 مرزهاى ابالات ذخحيره مى كنتد. برنامههاى حملونتل نياز دارند از وضعبت اتصال جادهمها، ريلها وا و
 دادههاى سرشمارى جمع آورىشده در هر بخش ذخ إيره كند.

 نياز داريد. سيستم بايگًاه دادهى شما بايد بتواند سريعاً به سؤالن نزديكتر ترين بيمارستان به يكك مكان
مغروض كدام است؟ جوابب دهد.

ابن برنامهها موجب بروز سيستمهاى بايگاه دادهى خاصى شُدهاند كه به نام سيستمهایى اطلاعاتى




 شاخحصهاى فضايُى نيز استغاده كتند، بنابر اين جستجو بر اساس تقربب فضاينى بسبار كارا است.
 كه قطعات زمين ذخيرهشدهاند مىتوانيد ابن قيد را مطرح كنيد كه هيّه دو قطعهى زمينى نبايد باهم
 زمين وا از دردسرهاى بزرگی خالاص كند.

بسيارى از سيستمهاى مليريت بِايًاه دادهى همهمنظوره الُحاقاتى برایى GIS نيز دارند. وقتى در حالْ

 در زندگى روزمره استغاده مىشّوند، بهعنوان نمونه مىتوان از برنـامـههــاى نـاوبــرى GPS مانند Google Map
صفنحه 1\&9 | مباتى و بغاهمبم هلوم كامييونتر



7-0- قالببهاى سريالّسازى





مورداستغاده در سريالـسازى را بر رسى كـيـمـ.










قالب JSON: اين قالب يكك قالب سريالسازى است كه بيشتر دنيا به آن تمايل دارند. اين قالب مىتواند دادههاى رابطهاى و غيررابطهاى را به روشى قابل ددرك براى كدنويسان نمايش دهد. الُحاقات بسبارى براى JSON وجود دارند: BSON (مدل دودويى JSON) كه بيشتربن كارابی را برای JSON در
 قالب CSV يا مقادير جداشده با كاما': اين قالب سادهترين قالب براى تبادل دادهها است. دادهها


 استفاده از آن سـخت است.

## تتيجهِ كيرى

در اين فصل آموختيم كه ساختاردهى اطلاعات در يكك بإيگاه داده براى استفادهى مغيد از آنها






 راههاى معمول بر ای تبادل دادهها بين برنامههأى متختلف را نشان داديمّ درنهايت، ستى كنيد يك سبستم مديريت بايگًاه داده را كه بهصورت گسترده مورداستغاده قرار



 بتو انيد بهصورت آكَاهانه از بين آلنها انتخاب كنيد.
صفتحه IFA | مبانى و مفاهيم علوم كامييوتر

- Database System Concepts, by Silberschatz
- Get it at https://code.energy/silber
- NoSQL Distilled, by Sadalage
- Get it at https://code.energy/sadalage
- Principles of Distributed Database Systems
- by Özsu, Get it at https://code.energy/ozsu


## V فصل

## كامیيوترها

هر فناورى كه بهاندازمى كافى يسشرفت كرده باشّد،
متمايز از جادو است.

- آرتو سی. كلاركـ"

ماشينهاى متغاوت بسبارى براى حل مسائل الختراعشُّدهاند. انواع متعلدى از كاميبوترها وجود دارند،





 با سلسلهمراتب حافظه سرعت را در قبال فضاى ذخير دانسازى به دست بياوريد.

در كل، كدنويسى براى افراد غير كدنويس شبيه به جادو است، نه ما.

## ى - ا-Y



(1917-2008) Arthur C. Clarke

(1903-1957) John von Neumann ${ }^{\text {r }}$
 نام انياكك نتش Random Access Memory (RAM) ${ }^{r}$



## 4 4 落



 ا اراء










Central Processing Unit (CPU)


















سيم دستور
RAM بكـكل

مؤلفهى CPU داراى سلونهاى حافظهى درونى است كه ثبات ' نام دارند. با استفاده از اين ثباتها، میى تواند عملبات سادهى رياضى وا انجام دهد. هم حنين امكان تبادل دادهها بين RAM و اين ثُباتها وجود دارد. موازد زير نمونههائى از عمليات قابل|جر اج توسط CPU هستند:


 به هر عمليات در مجموعهى دستور العمل بكك شماره اختصاص بافته است. كد كاميبوترى الزاماً بكك دنباله




 سال است كه وجود دارند.

 بك بَبات ويرّه است كه آدرس حافظهى دستور بعدى را كه بابد اجرا شود، نَّهدارى مى كند. در اين راستا، CPU كارهاى زير را انجام مىدهد: I. واكشّى دستور در آدرس حافظلهى داددشده توسط PC. r. Y. اضافه كردن PC به ميزان ا واحد.

با


Register '
Instruction Set ${ }^{\text {r }}$


 Program Counter (PC) ${ }^{\text { }}$


4004 Instruction Set BASIC INSTRUCTIONS

| MNEMONIC | $\begin{gathered} \text { OPR } \\ D_{3} D_{2} D_{1} D_{0} \end{gathered}$ | $\begin{gathered} \text { OPA } \\ \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \end{gathered}$ | DESCHIPTION OF OPERATION |
| :---: | :---: | :---: | :---: |
| NOP | 0000 | 0000 | No operation. |
| INC | 0110 | R R R R | Increment contents of register RRRR. |
| ADD | 1000 | A R R R | Add contents of register RRRR to accumulator with carry. |
| LD | 1010 | R R R R | Load contents of register RRRR to accumulator. |
| LDM | 1101 | D D D | Load data DODD to accumulator. |
| CLC | 1111 | 0001 | Clear carry. |
| IAC | 1111 | 0010 | Increment accumulator. |
| DAC | 1111 | 1000 | Decrement accumulator. |


 است.








 if $\mathrm{x}=0$
compute_this() else

## compute_that()







 بازى ويديويى تاريخ شمرده مىش دود




 , ادر هر ثأيهَ انجام دهند.
 2GHz
: Space Invaders



$$
\text { صغنه } 109 \text { | مبانى و مفاهيم علوم كامييوتر }
$$


 آبينده با هستههاى هر حهه بيشترى تجهيز خواهند شَد .

## CPU معمارىهای

 شُروع به بازى كنيد؟ يا جحرا نمى توانبد برنامههاى iPhone , ا, روى يكك Mac اجرا كنيد؟ دنيل اين امر بسيار ساده است: معمارىهاءى متفاوت CPU.
امروزه معمارى x86 تقريباً استاندارد است، بنابراين يكك كد مشابه را مىتوان بر روى اغلب
 متفاوت و بسيار كاراتر از بعل مصرف انرزّى هستند. تفاوت در معمارى CPU به معنى مـجموعه دستور الُعمل هاى متغاوت است، ازاينرو، از راه متغاوتى برای كد كذارى دستورات در قالب اعداد استفاده


 معمارى ¢ابيتى ساخختهشده بود. اين بدان معنى است كه اين CPU مىتوانست عمليات (جمع، معايسه و
 فقط 4 سبم به ازاي هر مورد داشتند.
كمى بعدازآن،

 اين


 حافظه رآدرسدهـى كنيه.
" يك CPU با . . .「 ${ }^{\text {r }}$

عطش ما براى بيشتر كردن قدرت محاسبات ادامه دارد. برنامههاى كامیيوترى بيحيلدهتر شُدهاند و





 راست در RAM و RPU منطقى است، به اين روش ليتل الِنديان ' مى گويند. ساير طراحان كامیيوتر تر جيح
 دودويى 1-1 1-0-0-0-0-0-1 بر اساس نوع النديان اعداد متفاوتى را نشان مىدهد":

$$
\begin{aligned}
& .2^{7}+2^{1}+2^{0}=131: \quad \text { بيگك إنديان: } 193 \text { • } \\
& .2^{0}+2^{6}+2^{7}=193: \text { • ليتل إنديان: • }
\end{aligned}
$$


 بابد روشى وا برای جلو گيرى از عدم تطابق اِنديان ُ انتخابِ كنيه. برنامهنويسان بهصورت دستى اعداد



 مى رسند و برعكس.

$$
\begin{gathered}
\text { Little-Endian } \\
\text { Big-Endian }
\end{gathered}
$$

r ${ }^{\text {² }}$

 Endianness Mismatch ${ }^{*}$

$$
\text { صفحه } 10 \text { | مبانى و مغاهيم علوم كامييوتر }
$$

امولاتور: گًاهى اوقات اجرا كردن كدى كه برای يكك CPU متفاوت طراحىشده بر روى كاميووتر خودتان مغيد است. با اين روش شما مىتوانيد بك برنامهى iPhone را بدون داشتن iPhone آزمايش كرده، يا بازى موردعاظهنان وا كه متصوص سوبر نينتندو 'است بازى كنيد. براى انجام اين كارها

$$
\text { نرم|فز ارهانيى به نام امولاتور }{ }^{\text {وجود دارند. }}
$$

بك امولانور رفتار ماشّين هدف را تقلبد مى كند: درواقع امولاّتور وانمود مى كند كه همان CPU، وند RAM





## -Y-Y


 انجام دهد، درنهايت بهوسيلهى دستور العملل هأى سأدهى CPU كه فقط شامل جمع و مقايسه اعداد هستند،
 دستور العممل ماشُين هستـنـ.

و'لى ما بهندرت برنامههاى خود را بهصورت مستقبم در قالب دستورالعمل هاى CPU مىنويسبم. نوشتن بك بازى كاميبوترى واقع گرايانهى سهبعدى به اين روش برای بكك انسان تقريباً غيرممكن است. براى




$$
\begin{array}{r}
\text { Emulator }
\end{array}
$$

(Game Boy ${ }^{r}$

$$
\begin{aligned}
& \text { عرضه سُد. بيتُ از } \\
& \text { Programming Languages }{ }^{*}
\end{aligned}
$$





$$
5 \times 4 \times 3 \times 2 \times 1=? \quad \text { بابد آن را با عبارات سادهتر جايگزين كنيم: }
$$

 $5+5+5+5+5+5+5+5+5+5+5+5+$ $5+5+5+5+5+5+5+5+5+5+5+5=$ ?
همزمان با اين كه ما در حال بازنويسى مدحاسبات خود با قائلبهاى ساده و سادهنر هستيم، تعداد عمليات موردنياز آن بيشتر و بيستر مىشود. همين اتفاق در مورد كد كاميوترى نيز مىافتد. كامپابلر
 تركيب اين فرايند با قدرت كتابخانههاى خارجى، مىتوتوانيم برنامههأى پيحيلدمى شامل ميلياردها دستور العُمل CPU , دا در جند خطط كد كه بهساد گیى قابل فهم و اصلاح هستند، بنويسبم.


بتواند برنامهاى شـامل دستورالعمل هانى زبر را دنبال كند:

- انجام دستورات شرطى: اگگر يك آدرس حافظه داراى مقدار مغروضى باشد، به نقطهى
ديگِرى از برنامه برود.
 مأشينى ميزان بيجيد گى يا سخت بودن محاسبات اهميتى ندارد، زيرا ابن ماشين مى تواند هر متحاسباتى را در قالب دستورالعمل هأى سادهى خواندن/نوشتن و دستورات شرطى بيان كند. با داشتن زمان و حافظهى يا كافى، اين دستور العملمها مى توانتد هر خجيزى را محاسبه كنتد.
 بدان معنى است كه يككCPU فقط با انجام دستورالعمل MOV مى تواند هر كارى را انتجام دهد.

(1912-1954) Alan Truing
Turing-Complete
 .https://code.energy/mov

مفهوم مهمى كه بايد در اينجا مطرح شُود اين است كه اگر برنامهاى وا بتوان در بكك زبان برنامهنويسى

 به زبان سادهتر تر جمه مى كند.

## سيستمههاى عامل




 براى اجر اشدن بابيد با سيستمهعامل ' كامیيوتر تعامل داشته باشنـند.


 غيرممكن است.

 خاصى وا ايججاد كرده و از سبستمعامل درخواست مى كتند بكك عملبات ورودى/خروجى موردنياز را 1


 انجام ابن كار با سيستمهاى عامل مكك با بلينو كس است است



صفخه |YY | مبانى و مفاهيم ملوم كامييوتر

## 





 عقيلده داشت باششل كه اين

```
function factorial(n)
    if n>1
        return factorial(n - 1) * n
```

    else
        return 1
        بايل به معادل آن مُدبل شُود:
        function factorial(n)
        result \(\leftarrow 1\)
    while \(n>1\)
        result \(\leftarrow\) result * \(n\)
        \(n \leftarrow n-1\)
    return result
    


$i \leftarrow x+y+1$
$j \leftarrow x+y$

$t 1 \leftarrow x+y$
$i \leftarrow t 1+1$
$j \leftarrow t 1$

$$
\text { فصل V: كامييوترها | صفته } 194
$$

بنابراين بر نوشتن برنامههاى تميز و قابل فهم بدون نباز به توضيحات بيشتر تهركز كنبد. آكر از بُعد





## زبانهای أسكريّتنويسى


 اين زبانها بهصورت مستفيم توسط CPU اجرا نمى شُوند، بلكه با استفاده از يكك مفسر هُ كه بإستى بر روى



 طول بيانجامد.
مهندسان گو گل بايد بهصورت منظم دستههاى بزرگی كد را كامهايل كتند. اين امر موجب میشود




## تفكيك ' اجز' و مهندسى معكوس



صنته 194 | مبانى و مغاهبم ملوم كامييوتر
 تقكيكت اجزا' مىنامند.












جا مىدهند. زمانى كه كد اصلاحشده اجرا مىشُود قبل از بروسى مـجوز به دستور JUMP تزريثششده مى مسد و بنابرابن مردم مى توانند ابن نرمافزّارهاى غيرقانونى و مسروقه را بدون بِرداخحت پبول اجرا كنند.


 سايبرى دفاع كرده با اهلاو او ارزشمند را هكك كتند. معروثترين حمله از اين نوع را مىتوان

 هستهاى زيرزمبنى ابران وا كنترل مى كردند، كند كرد.

## زرمافززارهاى متنباز

همانگونه كه پیشتر توضيَ داده شد، شُما مىتوانيد از طريق فايلهایى اجرايّى دودويى،
 ساخت كد دودويى را به دست بياوريد.

 است. برخى از مردم متتقدند كه بهتر است كد را با همكارى بكديگ, بسازنند، بنابراين كد منبع خود را را در
 هر كسى بتواند آن را بهصورت رابگًان استفاده كرده با تغيير دهد. سيستمهانى عامل مبتنى بر لبنو كس

 به دنبال نقاط ضعف امنيتى بگُردد. هماكنون نابتششده است كه سازمانهالى دولتى با استفاده از نقاط

| Stuxnet ${ }^{\text {' }}$ |
| :---: |
| Source Code ${ }^{\text {r }}$ |
| Open Source ${ }^{\text {r }}$ |
| Ubuntu ${ }^{+}$ |
| Fedora ${ }^{\circ}$ |
| Debian ${ }^{\text { }}$ |
| Mac OS ${ }^{\text {* }}$ |
| Closed Source ${ }^{\wedge}$ |

صنتحه 199 | مبانى و مفاهيم علوم كامييوتر

ضعنف امنتيتى برطروف نشـده در نرم|فزّازهاى مورداستفادهى روزمره به نغوذ و جاسوسى در كاميووتر ميليونها شَهرونـ حِرداخخته|ند.

 ويندوز يا مكك استفاده مىكنيد، بايل به مايكروسافت و آبل در رابطه با حغظ امنيتتان و ايزكه ابن
 سيستمهای متن.باز در دسترس تمام افراد متخخصص امنتيى قرار داشته، بنابراين شانسى كمترى براى رينهان ماندن جريبانهأى مترب امنيتى باقى مىماند.
( $>$

 ذخيرهسازى Tآنها معمولУ به كمتر از هزار بايت مححدود است. اين يعنى ثباتهاى CPU بهصورت مداوم بايد دادهها وا به RAM متتقل كرده يا ازآنجا دريافت كنتن. اگر دسترسى به حافظه كند باشد، CPU بايل در انتظار انجام كارهايشى بهوسيلهى RAM بيكار بماند. مدتزمانى كه براى خواندن و نوشتن دادهها در حافظظه صروف مىشود، مستقيماً بر كارايى كاميوتر تأنير

 بالين حال، RAM كتنـتر اسـت.
شكاف هردازنله-حافظة

پيشرفتهاى الخير فثاورى موجب افزايش سرعت CPU بهصورت نمايى شدهانن. سرعت حافظة نيز افثزايشيافته اسـت، ونى با شُتابِ بسيار كمترى. اين شكاف كارايّى بين CPU , RAM , شكاف

 نور از اين كثاب به حشَّم سُما برسـد. Processor-Memory Gap ${ }^{\text {r }}$









## موقييت زمانى و مكانىى






 Temporal Locality Spatial Locality
صفحه 19A | مبانى و مغاهيم علوم كامييوتر

ذخيره كردن اين آدرسهاى حافظه در يُباتهاى CPU خيلى خوبب است. اين امر از بسيارى از




## حافظهى نهان L1

ساختن بك حافظهى كمكى بسيار سريع كه با CPU تجميعشّده باشَّل، ممكن است. اين حافظهه را حافظهى نهان L1' مىنامند. دريافت كردن دادهها از اين حافظه و ورود آنها به ثبات اتها فقط كمى كندتر از دريافت كردن دادهها از خود نباتها استا


 فرابيند صدبار سربعتر از واكشتى دادهها از RAM است.
با حدود 10K حافظهى نهان L1 و بهكارگيرى هوشُمندانهى موقعيت زمانى و مكانى، تقريباً نصف فراخوانى هاى دسترسى به RAM فقط توسط حافظهى نهان انجام مى شُوند. اين ابداع، فناورى محاسبات رو
 كاهش مىدهد. بهاينترتيب، CPU زمان بسبار بيسترى براى انجام محاسبات واقعى نسبث به زم زمان بيكار بودن خواهد داشت .

## حافظهى نهان L2

افزايش اندازمى حافظهى نهان L1 موجب میشود عمليات واكشى دادهها از RAM بهندرت انجام شود و درنتيجه زمان انتظار CPU كاهش يابلد. بالانت حالن، وشَد حافظهى نهان L1 بدون كند ساختّن آن مشكل



 هـد سيكل CPU طول مى كتُند.








 مربتى در مركز تصوير 20MB حاكخذكى نيان L3 هسستند.




 L1/L2/L3

 همانُ




انداز 0
شكل Y Y Y Y: نمو داذ سلسلهمر اثتبح حاثظظه
 ذ .


فصل V: كامييوترها | صفحه

در اين موارد، ما بايد در سلسلممر انب حافظه بِايينتر برويمَ و از ديسكك سخت ' استفاده كنبم. در

 ديسكك سخت منتقل مى كنيم تا مقدارى حافظه آزاد شود.
مسْكل اين است كه ديسككهاى سخت بسبار كند هستند. بهطورمعمون، يككميليون سيكل CPU با بك ميلى ئانيه ${ }^{\top}$ مول مى كشّد نا دادهها بين ديسكك و RAM جابجا شوند. ممكن است به نظر بـر برسد كه دسترسى به دادهها از ديسك سريع است، الما به باد داشتّه باشّبد: دسترسى به RAM تنها هز ار سيكل و و بر ايى ديسك يككميليون سيكل طول مى كشد. حافظهى RAM اغلب حافظهى اوليه ْاميده مى شوده

 حافظهى ثانويه بابد در حافظهى اصلى كحى شوند. درواقع، هر بار كه كاميبوتر خود را روشّن مى كنبد،


هر Fز RAM را فرسوده تكنيد: مهم است اطمبنان حاصل شود كه تمام دادهها و برنامههائى كه بك كاميبوتر در طول فعالبت معمولى مديريت مى كند، مىتوانند در RAM آن جا جا بگيرند. در غير اين صورت،

 انجام محاسبات و اقعى، زمانْ بيشّرى را صرف انتظار براى انتقال دادهمها مى كند.

 RAM كه باعث تشكيل صف طولانى در بانكك ياصندوق مىشود، درحالى كه متصدى نمى تواند كارى جز
 يكى از دلايل اصلى خطاى سرور است.

| Hard Disk <br>  <br> Primary Memory Secondary Memory Trash Mode |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

صفته IVY | مبانى و مفاهيم علوم كامييوتر

## ذخيرهسازى خارجى و سوم




 ميلى ثانيه طول مى كشد نا بكك بستهى شبكه از يك كا كاميوتر به كامبيوتر ديگِر منتقل شود. اگر بستهى شُكه از طريق اينترنت منتقل شُود، اغلب برای مدت طولانىترى درحركت است: دويست نا سيصد




 بكشدّ. ذخخيرهسازى سوم فقط براى بإيًانى دادههايى مناسب است كه بهندرت نياز به دسترسى به آن داريد.

## روندها در فناورى حافظه

بهبود قابل توجه در فناورى مورداستغاده در حافظههاى (اسريع) (مواردى كه در بالایى سلسلممراتب حافظه قرار دارند) دشوار بوده است. از سوى ديگر، حافظهماى ("كنده) دائماً سربعتر و ارزانتر مى شوند.
 خحو اهد داشتـت

 مىدهد تا سريعتر، قابل اطمينانتر بوده و انرزّى كمترى مصرف كتن ائند.
 توليد كنتد كان ديسكههاى تر كيبى را با هر دو فناورى SSD و مغناطبسى توليد مى كنتن. دادههايىى كه

Tertiary Storage









## نتيجهِّيرى










صفتحه |V4 | مبانى و مفاهيم علوم كامييوتر

اصل ذخيرهسازى در حافظهى نهان موردبحث در اين فصل وامىتوان در بسبارى از سناريوها اعمال



## مراجع

- Structured Computer Organization, by Tanenbaum
- Get it at https://code.energy/tanenbaum
- Modern Compiler Implementation in C, by Appel
- Get it at https://code.energy/appel

برنابنويسى

وشتى كسى مى گويذ (امن يكك زبان برنامهنويسى
مى خحواهم كه فقط كارهأى مبودنظرم را براى
انجام به آن بیويم") يكك آبـنبات به وى بدهيد.

- آن جـى برليّس -

ما نيازمند اين هستم كه كامييوترها ما را دركك كتند. اين امر دليل بيان دستوراتمان به بكك زبان

 علمى تخيلى باشّيل. تا امروز، فقط كدنويسان اين توانايّى وا دارند كه بلون محدوديت به يكك ماشين


بهعنوان يكك كدنويس نيز افزايش مىيبابل. در اين فصل ياد خواهيل كرفت:

زبانشناسى مـخفى حاكم بر كد را در كك كنيد.
اطلاعات اوزشمثندتان را در درون متغير ها ذخيره كنيد.
به راهحل ها تحت پارأهإثمهاى متختلف فنكر كنيد.

بـدهيد.

- ا-

زبانهایى برنامهنويسى بسيار متفاوت هستند، اما همهى آلذها يكك كار انجام مىدهنثل: كار با اطلوعات.
 (1922-1990) Alan Jay Perlis '
 Value ${ }^{\text {r }}$
صفتحه IVY | مباني و مغاهيبم علوم كامبيوتر
 به كاميبيوتر الستقاده مى كند.

## مقادير






 صرضى جغر افياينى.




عبارات

 3
به ممين راحتى. با استثفاده از نماد راستين 3 مقدار بّ را به وجود آورديم. خيلى سرراسـت. سأير انواع


 بيكتو إنمئأل
getPacificTime()

" ${ }^{\text {º }}$
Literal ${ }^{*}$



 برابر با ساعت كتو تى در تيويور كك إيجاد كنيهم:








$$
\text { تبد يل مى گُردد. عبأرت }{ }^{2}+4^{2} \text { به } 16 \text { + } 2 \text { و سبسى به } 18 \text { تبديل مى شود. }
$$

## دستورات


 .Print("hello world") :مى
 مختلفُ از انتواع متفاونى ازذ دستورات بشتيباتى مى كتند.




 میى
 متعلـودشـده. باثـد
|-

 میى


 ' Name Binding ${ }^{*}$ Alias *
$\mathrm{pi} \leftarrow 3.142$

 میرسيلـ:

## var pi

pi $=3.142$



## نوعهدهى متّثير




 .

 "مى كتند كـي بهمورت زير بنويسيل:

## float pi;

pi $=3.142$;






 معنادار بو دن عمليات بِين مثغير ها اطمبنان -امصل شيود.

صفحه +1 1 | مبانى و مفاهيم علوم كامييوتر

متحودوهى متغير


غير مرتبط كد قابل استفاده نخواهند بود.

بهعنوانمثالن، من مىتوانم يكك متغير length در دو نقطهى برنامهام تعريف كنمّ، بدون آنذ كه تو جه


واردشده دجانر تصادم مى شود.

براى اججتناب از تصادم، انقيادهاى نام در كل كد منبع معتبر نيستند. مححودهى متغير ' مشخصص

در تابعى كه تعريفـشده معتبر است.

زمينه ِ با محيط است. معمولا متغيرهايى كه در يكك زمينه تعريف مىشوند بهمحض خرووج جريان اجرا از آن زمينه،

 ابن متغيرها را متغير هاى عمومى
مـجموعهى تمام نامهاى در دسترس بهصورت عمومى، فضاى نامْ هُمَا را مى سازند. شُما بايد




 كردن جیزهاى غيرضرورى به فضاى نام موجب بروز مشكلى به نام آلود






 ديد گاه سبك و ووش كدنويسى شما را جهت میى دهد.



 كارابیى، بيجيد گى و سرعت بيشتر كنتد.


 بهانينترتبب، شما قادر خواهيد بود با حداكثر الرّبخشى كدنويسى كنبد.

## برنامانويسى دستورى

يار ادايمم برنامهنويسى دستورى

 مى شُوند.
اين بإرادابم اولبن بإرادابم برنامهنويسى بوده و تعمبيمى طبيعى از روش عملكرد كاميويوترها است.


هفحه | | مبانى و معاهيبم, علوم كامييوتر






http://xkcd.com ; شكل

برثاملؤويسى سّل ماشين: برثامهثويسان اوليه، كه مجيود بودثل كدششان را بهصصورت دستى و با







 ولى قو إنين بنيّادين يكسان هستيتند.

 صرفهجويع در چجند سيكل CPU اهمبت دارد نيز استفاده مىشُود. بهعنوانمثال، فرض كنيد در حال بهينهسازى يك سرِور وب با كارابیى بالا هستبد و به بيك مشكل برخورد كردهايد. شُما مى توانيد اين مشكل را به كد ASM تبديل كرده و آن وا بر برسى كنيد. در بسيارى از




برنامdنويسى ساختيافته: در ابتدا، برنامهها از دستور GOTO براى كنترل جريان اجرا استفاده





 for

برنامهنويسى دويهاى: بيسرفت بعدى در هنر كدنويسى، برنامهنويسى روبهاى "بود. اين روش

 تبديل كرده، و سیس تابع خود را بهمنظور استفادهى مـجدد از كد در زمان نباز فراخوانى كنبد. اين امر
 مجزز سازى آنها را در قالب بخشتهانى منطقى سادهتر مى كند.

Spaghetti Code


Procedural Programming ${ }^{r}$
Procedure ${ }^{\text {F }}$
صفحه |AF | مباتى و مفا هيم هلوم كامييوتر














 coordinates

 sort(coordinates, closer_to_home)


 از بكك كيست، بإيل بنويسيل:

Functional Programming High-Order Functions ${ }^{r}$
odd_numbers $\leftarrow$ filter(numbers, number_is_odd)

تابع number_is_odd تابعى اسـت كم يكك علد را درياففت كرده و در صبورت فرد بودن آن مقدار True



;ير ر1 اثتجام دهيم:
squared_numbers $\leftarrow \operatorname{map}$ (numbers, square)


 بهصورت زير محاسبس مى كيتيد: squared_numbers $=[x \star \star 2$ for $x$ in numbers $]$

 در انختيار شُما قرار ميدهند. از آنها استغاده و سوءاسشغاده كنيـ.
 كتدن میتواثيل از تابع كاهش

function reduce(list, initial_val, func)
accumulator $\leftarrow$ initial_val
for item in list
accumulator $\leftarrow$ func(accumulator, item)
return accumulator

Syntactic Sugar
Reduce ${ }^{\text { }}$
 sum $\leftarrow$ function $(a, b): a+b$
summed_numbers $\&$ reduce (numbers, 0 , sum)

 میتوائيل بنويسيل:
wsum $\leftarrow$ function ( $a, ~ b): ~ a+$ length (split (b))
number_of_words $\leftarrow$ reduce(sentences, 0 , wsum)







 sum $\leftarrow$ function $(a, b): a+b$



sum_three $\leftarrow \operatorname{sum}(3)$
print sum_three(1) \# prints "4".
special_sum $\leftarrow$ sum(get_number ())
print special_sum(1) \# prints "get_number() + 1".
فصل A AY برنامهنويسى |AV








```
function power_generator(base)
    function power(x)
        return power(x, base)
    return power
```



```
square & power_generator(2)
print square(2) # prints 4.
    cube & power_generator(3)
    print cube(2) # prints 8.
```



 . محبط خود دستر تسى دارد.

 يكك متغنر مبومى اسـت:
GLOBAL_COUNT $\leqslant 0$
function add( x )
GLOBAL_COUNT $\leftarrow$ GLOBAL_COUNT $+x$
return GLOBAL_COUNT
صفهته |MA | مبائى و مفاهميم علوم كاميوتر

 function make_adder()

```
n}\leftarrow
```

function adder ( $x$ )
$n \leqslant x+n$
return $n$
return adder
 my_adder $\leftarrow$ make_adder ()
print my_adder (5) \# prints 5.
print my_adder (2) \# prints $7(5+2)$.
print my_adder(3) \# prints $10(5+2+3)$.

تطابق التُو: برنامهنوبسى ثانبى به شمها الجازه مى دهد با توابع مانتد توابع رياضیى برخور 2 كنيد. در


$$
\begin{gathered}
0!=1 \\
n!=n \times(n-1)!
\end{gathered}
$$


مى توانيـد بنوبـبـيـ:
factorial(0): 1
factorial $(n): n \times$ factorial $(n-1)$
function factoriat( n )

$$
\text { if } \mathrm{n}=0
$$

return 1
else
return $n \times$ factorial $(n-1)$

 بسيار وابسته به زمان هستئل و ترتيب دستورات دو كد ثأثيرى بر وفتار آن ندارد. دو ايّن زبانهها، تمام

مقادير منتسب به متغيرها غيرقابل تغيير هستئد. اين بي بيه را النتساب واحد ' مىنامند. به دليل آن كه هيج



برنامهنويسى منطقى
هر زمان كه مسئلهى موردنظر شُما راهحل مـجموعهاى از فرمولهالى منطقى باشُد، مىتوانيد از برنامdنويسى منطقى ${ }^{\text {¹ }}$ "
 انجام مىشود. كامييوتر وظيفهى تغسير متغيرهاى منطقى و ثرسوجوها


 براى جستجوى فضأى راهحل و ارائهى نتايج را بر عهـه دارد دارد.



## تنيجهـ،


 بدانيد، بهتر مى توانيد كدنويسى كنبد.




 زمينههأى بسبار خاص است.



## مراجع

- Essentials of Programming Languages, by Friedman
- Get it at https://code.energy/friedman
- Code Complete, by McConnell
- Get it at https://code.energy/code-complete


## نتيجهگيرى

آموزش علوم كاميبوتر نمىتواند هيجر كس را به بك برنامهنويس خبره تبديل كند، همان گونه كه
 نغاش خبره تبديل نمى كند.

- اريك اس. ريموند

اين كتاب مهمتربن مباحت علوم كامبيوتر را بهصورت بسبار ساده الرائه كرده است. اين حداقل هيزى بیى است كه بكك برنامهنويس خوب بابيد در مورد علوم كاميبوتر بداندا










بود. يّس آمادهشده و شـروع به كدنويسى كنبد.


 بهبود بخشبدף برايى من بك خط به آدرس hi@code. energy بنويسبد.

[^3]

## پيوست

## I.

محاسبات را مىتوان به كار با اعداد كاهش داد، زيرا الطلاعات قابلنمايش در قالـب اعداد هستند.


 سيستمهاى عددى قديمى (مانند اعلداد رومى: III، II ، I ، غيره) اعداد را بهصور نمائش مى دهند. سيستم عـدى مورداستفادوى امروزى نيز بر اساس مسبموع ارقام عمل مى كنـد، ولى الرزش

 ولى اين سيستم براى هـر مبناى d كار مى كند:



$$
\text { صنتهي } 194 \text { | مبانُى و مغاهيم علوم كامبيوتر }
$$

داستان به-جأيع برمی گردد كه يكك معلم دورْى دبستان بهعنوان تنييه از گّاوس خورالست تمام اعدلد
 كر د. ترفند او بازى كردن با تر تيب عناحر دو برابر مبجموع بود:

$$
\begin{gathered}
2 \times \sum_{i=1}^{100} i=(1+2+3+\cdots+100)+(1+2+3+\cdots+100) \\
=\underbrace{=(1+100)+(2+99)+\cdots+(99+2)+(100+1)}
\end{gathered}
$$

$$
=\underbrace{101+101+\cdots+101}_{\downarrow 100}=10,100
$$

 ,سهى زير بنويسيم:

$$
\sum_{i=1}^{n} i=\sum_{i=1}^{n}(n+1-i)
$$

$$
2 \times \sum_{i=1}^{n} i=\sum_{i=1}^{n} i+\sum_{i=1}^{n}(n+1-i)=\sum_{i=1}^{n}(i+n+1-i)=\sum_{i=1}^{n}(n+1)
$$

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

## .III




$$
\text { بيو.ست | صفته، } 190
$$


 كُذائته،اند در نظر بيُيريد:

 دميهم:

$$
S_{2}=\{n, \ldots
$$



اجتماع: كدام ميهونها بـ

اين مجموعهى جديد , ا اجتماع

$$
\text { S } S_{3}=S_{1} \cup S_{2}
$$

الشتراكك: كدام ميمونها به

$$
S_{4}=\{\text { 圈 }\}
$$



$$
\text { S } S_{3}=S_{1} \cap S_{2}
$$

مجمومهههاى ثوانى: توجه دائته بابُيد كه S $S_{5}=S$
Subset ${ }^{1}$
Union
Intersection ${ }^{r}$




$$
P_{S}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{16}\right\}
$$

## د التكوريته كادان .IV




بعرو شيليل، حـداكثر سـود را بـ دـــت مى آوريد.
 جي كادان :

## function trade_kadane(prices):

$$
\begin{aligned}
& \text { sell_day } \leftarrow 1 \\
& \text { buy_day } \leftarrow 1 \\
& \text { best_profit } \leftarrow 0 \\
& \text { for each s from } 2 \text { to } \\
& \text { if prices[s] < } \\
& b \leftarrow s \\
& \text { else } \\
& b \leftarrow \text { buy_day }
\end{aligned}
$$

$$
\text { for each s from } 2 \text { to prices. length }
$$

if prices[s] < prices[buy_day]

$$
\text { profit } \leftarrow \operatorname{prices}[s]-\operatorname{prices}[b]
$$

if profit > best_profit

$$
\text { sell_day } \leqslant s
$$

$$
\text { buy_day } \leftarrow b
$$

best_profit \& profit
return (sell_day, buy_day)



# COMPUTER SCIENCE DISTILLED 

## Learn the Art of Solving Computational Problems

By:<br>Wladston Ferreira Filho

Translated By:
Ali Naserasadi
Computer Group, Zarand Higher Education Complex

## Ali Rahnama

Computer Group, Zarand Higher Education Complex

# CONPUITR SCIENCE DISIILLED Learn the Art of Solving Computational Problems 

## Wladston Ferreira Bilho











Translated By:


## Ali Nascrasadi Ali Rahnama


[^0]:    (1879-1955) Albert Einstein'

[^1]:    ' در اينجبا يك فهرست كاملثر وبجود دارد: https://code. energy/algo-list Tabulating Machine Company

    Insertion Sort ${ }^{r}$
    Merge Sort ${ }^{\dagger}$

[^2]:    Distributed Database Single-Master Replication ${ }^{r}$ Multi-Master Replication ${ }^{r}$

[^3]:    (1957- ) Eric S. Raymond '

